HITRANS and Highlands \& Islands Enterprise (HIE)
A9 Upgrade Impacts Study
Modelling and Economic Appraisal Report Final Report
May 2008

## TABLE OF CONTENTS

1. INTRODUCTION. ..... 1
1.1 Background. .....  .1
1.2 About this Economic Appraisal .....  .1
1.3 Structure of this Report ..... 2
2. NETWORK COVERAGE AND NEW TRAFFIC DATA. ..... 3
2.1 Introduction. ..... 3
2.2 Network and area covered ..... 3
2.3 Traffic surveys ..... 4
3. MODEL DEVELOPMENT \& CALIBRATION ..... 8
3.1 Introduction. .....  8
3.2 Base Model ..... 9
3.3 Base Trip Matrix Preparation ..... 10
3.4 Assignment Procedure \& Generalised Costs ..... 10
3.5 Traffic Growth Forecasts ..... 11
3.6 Model Calibration Tests ..... 11
4. ECONOMIC APPRAISAL RESULTS ..... 14
4.1 Application of the Traffic Model ..... 14
4.2 Appraisal Assumptions ..... 14
4.3 Appraisal Results ..... 14
5 CONCLUSIONS ..... 16
5.1 Introduction ..... 16
5.2 Model Development ..... 16
5.3 TEE Results ..... 16
APPENDIX A - GEH Model Calibration Tests Results
APPENDIX B - TUBA Printout for Full Dualling Option

## Document Control

Project Title: TEE Appraisal Report

JEN Code: S100867
Document Type: Appraisal Report
Document Status: Draft

## Document Reference

| Authors: | Andrew McKee, Jonathan Campbell |
| :--- | :--- |
| Reviewer: | Marwan AL-Azzawi |
| Date of Issue: | 27 March 2008 (Draft) <br>  |
|  | 15 May 2008 (Final Draft) |
|  |  |

## EXECUTIVE SUMMARY

## E. 1 Background

E.1.1 This appraisal is an evaluation of the potential benefits from dualling the A9 from Perth to Inverness, for the whole route and targeted sections of the route. The evaluation, which is based on a TEE appraisal, is presented in this report as a high-level assessment using a CUBE Voyager/TRIPS traffic model and the Transport User Benefits Appraisal (TUBA) program. No cost estimates were prepared and included in the TEE appraisal, and only the Present Value of Benefits (PVBs) have been estimated.

## E. 2 Appraisal Assumptions

E2.1 The specific economic assumptions and cost adjustments are consistent with the Government's Scottish Transport Appraisal Guidance (STAG)/webTAG appraisal convention. All monetary values are in market prices, and values are discounted to the base year 2002, as adopted in TUBA. The test discount rate is $3.5 \%$ for project years 1 to 30 , and $3 \%$ thereafter. An appraisal period of 60 years has been adopted, with a first year construction year (opening year) in 2010, and a horizon year (final appraisal year) in 2069. The modelled years are from 2010 and 2025.
E2.2 As this assessment is only a partial appraisal, with no account taken of the costs, the assumptions relating to costs such as risk and optimism bias do not apply. As pointed out above, only the benefits are presented here.

## E. 3 Appraisal Results: Full Dualling

E3.1 The results of the TUBA appraisal on monetised benefits are shown below.

- User benefits (Consumers): £582 million;
- User benefits (Businesses): £594.1 million;
- Carbon benefits: - $£ 3.3$ million; and
- Net Present Value (PVB) £1,173.3 million.

E3.2 It should be noted that TUBA does not take account of accident impacts. However these results show that the predominant benefits are travel-time savings. Savings on vehicle operating costs are also a feature of the benefits, although they are less significant.

## E. 4 Appraisal Results: Targeted Dualling

E4.1 The appraisal of targeted sections of the A9 was based on a pro-rata of time savings at key sections of the A9 against the total saving along the whole route, multiplied by the total PVB. The appraisal shows the PVBs for the three top individual sections of the A9 in terms of benefits:

- Between Kingussie junction and Aviemore North junction: a PVB of $£ 17.4$ million per km in 2002 prices;
- Between Aviemore North junction and Slochd: a PVB of $£ 12.8$ million per km in 2002 prices; and
- Drumochter to Dalwhinnie junction: a PVB of $£ 12.1$ million per km in 2002 prices.


## E. 5 Concluding remarks

E5.1 Although ideally full dualling of the entire A9 would be the preferred option with the investment returning benefits of over $£ 1.1$ billion (in 2002 prices), clearly there will be huge cost implications to this scale of investment. To cope with the cost profile, an alternative option is to dual sections staggered over a period of time. The appraisal above shows which sections could be prioritised in terms of upgrading, based on their relative contribution in benefits.

## 1. INTRODUCTION

### 1.1 Background

1.1.1 The A 9 is the main trunk route from the central belt to the Highlands and Islands and as such has been assessed as having the highest level of functionality of any transport link in the region, accounting for almost all passenger journeys and freight movements between Inverness and the central belt along the corridor. It is a lifeline route for the island communities of Orkney, Lewis and Harris for supplies and business links and is an essential route for tourist trips visiting the north of Scotland.
1.1.2 Growth in the study area has been consistently better than that of Scotland as a whole, but remains substantially worse off in terms of Gross Value Added (GVA) per capita, with a value for Moray of only $89 \%$ of that of Scotland in 2005. Low GVA per capita and low earnings, despite some recent positive trends, is characteristic of the area compared to Scotland as a whole. The importance of the A9 has emerged in sharp relief as the economy and population of Inverness and the surrounding Moray and East Highland region has grown significantly in recent years. There is a growing perception that competitiveness and continuing economic success of the sub-region cannot be guaranteed without investment to upgrade the A9, in particular dualling of key sections of the route, or dualling the entire route between Inverness and Perth.
1.1.3 Evidence from various sources of data and consultations suggests that the A9 is substandard in terms of safety and the lack of overtaking opportunities, both of which cause considerable stress on drivers. This is deemed as a more serious issue than long or unreliable journey times.

### 1.2 About this Economic Appraisal

1.2.1 A recent strategic economic appraisal study looking at the potential wider economic impacts of improving the A9 undertaken for HITRANS/HIE in 2007 identified considerable potential GVA and Economic Activity and Locational Impacts (EALI) benefits than may result from upgrading of the A9 ${ }^{1}$. Sensitivity tests carried out using local projections of employment changes supplied by HIE, which took into account proposals and policies set out in local economic and development strategies, suggested there could be further significant increases to these GVA benefit estimates.
1.2.2 Although the overall conclusion from this research is that there are likely to be significant economic benefits to upgrading the A9, the study also found that there would be significant Transport Economic Efficiency (TEE) benefits in terms of time savings and other highway benefits underpinning the wider economic appraisal. Consequently, HITRANS and HIE have asked Scott Wilson to carry out a high-level TEE appraisal of the potential benefits of upgrading the A9 from Perth to Inverness.
1.2.3 The TEE appraisal presented in this report is a high-level assessment, using the TUBA programme rather than the detailed more detailed NESA model. No cost estimates were prepared and included in the TEE appraisal. Hence, only Present Value of Benefits (PVBs) have been estimated.
1.2.4 For the purposes of the scheme evaluation, it is assumed full dualling can be accommodated on the line of the existing alignment of the A9. No engineering design works to DMRB standards were proposed in the high-level TEE appraisal.

[^0]1.2.4 The previous Strategic Impact Assessment (SIA) Study was commissioned to help inform decision-makers of the economic benefits of improvements to the A9. The purpose of this report is to further quantify the economic benefits of the full dualling option of the A9 trunk road between Perth and Inverness identified in the previous SIA Report.

### 1.3 Structure of this Report

1.3.1 The remainder of the report is organised as follows:

Chapter 2 - $\quad$ sets out the existing and new traffic data used in this appraisal.
Chapter 3 - describes the traffic model developed for analysing present and future traffic conditions.

Chapter 4 - outlines the TEE appraisal process and associated results.

Chapter 5 - sets out the overall conclusions.

## 2. NETWORK COVERAGE AND NEW TRAFFIC DATA

### 2.1 Introduction

2.1.1 This Chapter describes the network in broad terms and depicts the area covered by the appraisal. The study has set up a new zonal system that defines the study area immediately adjacent to the A9 required by the modelling procedure.
2.1.2 Data from both the previous SIA study and new data was used as the basis of the appraisal. Additional ATC data was used, and junction counts were carried out. An additional roadside interview (RSI) was undertaken to determine traffic origin and destination patterns which complemented other RSIs along the A9, which were also used.

### 2.2 Network and area covered

2.2.1 The A9 is the main trunk route from the central belt to the Highlands and Islands, linking Perth and Inverness via a number of towns including Dunkeld, Pitlochry, Blair Atholl, Dalwhinnie, Kingussie and Aviemore. The A9 has been assessed as having the highest functionality of any transport link in the region, accounting for $98 \%$ of all passenger journeys between Inverness and the central belt, and almost all freight movements along the corridor ${ }^{2}$.
2.2.2 The A9 between Perth and Inverness is the main commercial corridor for goods and services to be transported into and out of the Inverness and the western Moray Firth areas. It also provides access to the northern and western Highlands, including Caithness, Sutherland, and Wester Ross for
 business and leisure purposes.
2.2.3 The A9 also provides access to the remoter Islands communities of Orkney, Lewis and Harris for supplies, business trips and for tourists; and also provides important ancillary access to parts of the western Highlands, including Skye, Lochaber and Lochalsh for both business and leisure trips.
2.2.4 The A9 trunk road between Perth and Inverness is approximately 182 km in length and analysis of journey times using the AA Milemaster system suggests it takes approximately 2 hours and 10 minutes to travel by road ${ }^{3}$. The road is predominantly single carriageway, with only around 42 km of it dualled. The Figure (above) shows the route of the A9 through the study area.
2.2.5 The route is of a generally good standard, comprising a mixture of rural single carriageway, dual carriageway and WS2 2 carriageway, with the carriageway width meeting the current minimum standard 7.3 metres over the entire length of the route.
2.2.6 For the purposes of this study the A9 has been divided up into 25 zones, of which 21 border the A9. The zones are numbered on a north to south axis. These zones are shown in Table 2.1

[^1]Table 2.1: $\quad$ Description of the Zones of the Study Area

| Zone | Zone Name | Zone | Zone Name | Zone | Zone Name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | Inverness <br> Central/North/North-West | $\mathbf{1 1}$ | Ballindalloch | $\mathbf{2 1}$ | Perth \& Central Belt |
| $\mathbf{2}$ | Inverness East/Culloden | $\mathbf{1 2}$ | Nethy Bridge | $\mathbf{2 2}$ | NE Scotland |
| $\mathbf{3}$ | Inverness West/Central- <br> West | $\mathbf{1 3}$ | Aviemore | $\mathbf{2 3}$ | NW Scotland |
| $\mathbf{4}$ | Inverness South/South-West | $\mathbf{1 4}$ | Pitlochry | $\mathbf{2 4}$ | SW Scotland \& Ireland |
| $\mathbf{5}$ | Nairn | $\mathbf{1 5}$ | Blairgowrie North | $\mathbf{2 5}$ | SE Scotland \& Rest of UK |
| $\mathbf{6}$ | Tomatin/Moy | $\mathbf{1 6}$ | Blairgowrie South |  |  |
| $\mathbf{7}$ | Granton-on-Spey | $\mathbf{1 7}$ | Dunkeld |  |  |
| $\mathbf{8}$ | Newtonmore | $\mathbf{1 8}$ | Luncarty |  |  |
| $\mathbf{9}$ | Carrbridge | $\mathbf{1 9}$ | Perth North/North- <br> West |  |  |
| $\mathbf{1 0}$ | Boat of Garten | $\mathbf{2 0}$ | Perth East/North- <br> East |  |  |

### 2.3 Traffic surveys

## Previous Traffic Data

2.3.1 Traffic data was obtained from a number of automatic traffic count (ATC) sites along the A9, and travel information was also obtained from roadside interview (RSI) surveys. Because of the differing patterns of travel experienced along the route of the A9 from Perth to Inverness, the A9 was divided into 3 sections to capture the different characteristics of movements at each section. These sections were south of the study route (just north of Perth), the middle of the study route (at Aviemore) and north of the study route (at Inverness). Information from traffic surveys was obtained for each of these sections of the A9.
2.3.2 Traffic data was collected from the Scottish Roads Traffic Database (SRTDb) for various years, by different days and months. These are a suitable source of long-term traffic flow data and seasonal variations.
2.3.3 The analysis of this information has produced average daily traffic volumes on key roads in and around the study route, including on the A9 and some of its surrounding links. These flows were updated to 2007 as a base year, and are summarised in the Figure (right).
2.3.4 Focussing in on the A9, the data shows the busiest sections
 of the A9 are north of Perth followed by just south of Inverness. This is to be expected given the built-up nature of

## HITRANS and Highlands \& Islands Enterprise (HIE)

TEE Appraisal of Full Dualling of A9
Appraisal Report
these important cities compared to the more rural sections of the route. However, the data also shows there are significant daily volumes along its entire route.
2.3.5 Figure 2.1 shows the hourly profile of traffic flows for a neutral day and a weekend day, for a neutral month (November) for Aviemore, derived from SRTDb data. The Figure clearly shows the PM peak in traffic flows, both northbound and southbound during the weekday. However weekend traffic data show opposing flows northbound and southbound, with flows rising through the day northbound, and falling through the day southbound at weekends.
Figure 2.1: Hourly Profile of Traffic Flows by Direction, Aviemore (SRTDb, 2007)

2.3.6 For comparison, Figure 2.2 shows the hourly profile of traffic flows for DunkeldBirnam, approximately 112 km south of Aviemore towards Perth. The major difference is the weekend traffic and in particular the rise in traffic volumes southbound between Dunkeld and Birnam, possible indicating the pull of Perth for shopping and other activities at the weekend for more southerly locations on the A9.

Figure 2.2: Hourly Profile of Traffic Flows by Direction, Dunkeld-Birnam, (SRTDb, 2007)


## Previous Speed Surveys

2.3.7 A recent study by Reference Economic Consultants looked at journey times, vehicle speeds and platooning along the $\mathrm{A} 9^{4}$. The section of the A9 which was analysed is approximately 173 km long and extends from the A912 Roundabout at Perth to Raigmore Interchange, Inverness.
2.3.8 A number of surveys were carried out at different times/months and the median observed journey times for the surveyed route ranged between:

- 1 hour and $591 / 2$ minutes (giving an average speed of 54 mph ); and
- slightly under 1 hour \& 54 minutes (representing an average speed of 57 mph ).

[^2]2.3.9 This speed data was considered suitable for this assessment and hence was used in this appraisal. No new speed surveys were therefore carried out.

## New surveys

2.3.10 A programme of new traffic counts were undertaken to supplement the data already collated from previous studies and to complement data from alternative sources. This includes a series of link and junction traffic counts at key locations along the A9, at the following locations:

- Dunkeld Rd Rndbt, Perth
- North of Luncarty, Perth
- Gauls Jnc, Bankfoot
- Birnam Jnc, South of Dunkeld
- Dunkeld/Inver Jnc
- Dalmarnock Link
- Logierait/Ballinluig Jnc
- Croltinload Jnc (incl On/Off Slips)
- Pitlochry Jnc
- Aldclune
- Pitagowan
- Calvine
- Dalnaspidal Lodge
- South of Dalwhinnie Jnc
- Etteridge
- South of Newtonmore
- Ruthven Jnc
- Kingussie Jnc
- Kincraig
- Polchar Jnc
- North of Grampian Rd
- Granish Jnc
- North of Kinveachy
- Jnc North of Bogroy
- South of Findhorn Bridge
- Jnc South of Moy
- Jnc with B851 South
- Daviot Jnc (B9154)
- House of Daviot Jnc (B851 North)
- Jnc with B9177
- Jnc with B8082
- Sir Walter Scott Drive
- North of Sir Walter Scott Drive
- Raigmore Interchange
2.3.11 The counts were carried out at the major three-arm and four arm junctions on the A9. They were undertaken over a total of eight road sections, 23 three-arm junctions, 3 four-arm junctions, on large four-arm junction just south of Inverness. One further count was carried out on the slip roads of the grade-separated junction on the Raigmore Junction in Inverness, using video surveys.
2.3.12 In addition to the vehicle counts, a 12-hour RSI was carried out, between 0700 and 1900 on the south side of Inverness. This was carried out on a Thursday at the end of November 2007 (neutral day and month). The new RSI gives valuable additional


## TEE Appraisal of Full Dualling of A9

Appraisal Report
information on trip origins and destinations by vehicle type and by time period. This RSI is in addition to the three previous RSIs undertaken for the SIA study, and located at Aviemore, the junction of the A9 and B9177, and just outside Perth (Southbound). The RSI data is then used in order to build an origin-destination matrix of traffic movements for different vehicle types at different times of the day.

## Annualisation Factors

2.3.13 Transport Scotland maintains a network of permanent Automatic Traffic Count (ATC) sites across the Scottish road network, several of which are located on the A9. The information collected from these ATC sites represent the most continuous data from which variations and trends in traffic flows on the A9 can be derived.
2.3.14 Information from this site was used to derive expansion factors to apply to the peak hour traffic assignments to estimate Annual Average Daily Traffic (AADT) flows and 18-hour traffic flows.
2.3.15 New ATC data used was for neutral days, Wednesdays or Thursdays, for the month of November, with two data sets for October. Both months are considered neutral months - that is where traffic flows are unlikely to be affected by seasonality factors.

Appraisal Report

## 3. MODEL DEVELOPMENT \& CALIBRATION

### 3.1 Introduction

3.1.1 The traffic modelling for the A9 TEE Appraisal was carried out using the CUBE Voyager computer software. This is an industry-standard computer program used to examine proposed improvements in the road networks.
3.1.2 The CUBE Voyager model consists of the following key elements:

- a network representation of the road network;
- a trip matrix to define traffic movements within the modelled area;
- an assignment algorithm to allocate trips between each pair of zones to the network based on a defined generalised cost equation;
- a simulation of the network operational performance arising from the assigned traffic; and
- the production of road user benefits and other effects for use in the appraisal of new transport options.
3.1.3 There are two components to the CUBE Voyager model: a component representing the road network in the model area and a series of trip matrices representing origindestination (OD) trips by different vehicle classes and time periods.
3.1.4 The CUBE Voyager model allows wider area routing so that the trips are correctly loaded at route zones around the boundary of the simulation area in the base and forecast year mode. The operation of the CUBE Voyager model allows forecasts based on growth factors derived from other programmes such as TEMPRO or NRTF ${ }^{5}$.
3.1.5 The CUBE Voyager model developed for this study is based on a Fixed Trip Matrix (FTM) assignment for the following reasons:
- FTM modelling is tried, tested and used extensively elsewhere;
- the FTM modelling process used in this study includes for the effects of road capacity influences on travel speeds and the resultant travel times;
- the network being modelled is a skeletal network with little route options for traffic to transfer to other areas if traffic flows exceed road capacity;
- other approaches require a whole rafter of additional assumptions which may not add to the accuracy of the model; and
- this appraisal is not modelling modal shift.

[^3]Appraisal Report

### 3.2 Base Model

3.2.1 The area modelled was divided into 25 zones. Of these 21 zones were decided upon by identifying the main junctions on the A9 and their hinterland into logical areas, which shared a common access point, or area of access onto the A9 road network to be modelled.
3.2.2 The 21 zones (Figure right) cover the entire route and adjacent areas between Inverness and Perth. The remaining zones (zones 22 to 25) cover the rest of the country.
3.2.3 The base model, which is essentially a representation of the existing conditions of the A9 trunk road and other major roads within the study area, was defined by a series of links and nodes. Each of the 25 zones feeds into the network at one of the nodes. Many of the nodes represent a single junction, however some are a simplified representation of more than one minor junction and/or accesses. All the major junctions within the modelled area are represented by at least one of the nodes.
3.2.4 The road categories used in the model are based on those given in the NESA Manual in
 DMRB Volume 13, Section 1, Part 5, Table $1 / 1$. The link lengths and number of lanes are based on the existing physical conditions and the link capacities are based on DMRB Volume 5, Section 1, Part 3.
3.2.5 Every link was modelled in two directions. Speed limits are based on the actual speed limits on the existing road, i.e. 60 mph on the A9. The A9 was modelled as a single carriageway, a wide single carriageway and as a dual carriageway, where appropriate.
3.2.6 The CUBE Voyager model time periods are consistent with other upper level models such as Transport Model for Scotland (TMfS) for possible compatibility with national forecasts. The CUBE Voyager model therefore utilises the following time periods:

- AM Peak $1 / 3$ average of 0700-1000hrs;
- Inter Peak $1 / 6$ average of $1000-1600 \mathrm{hrs}$; and
- PM Peak $1 / 3$ average of $1600-1900 \mathrm{hrs}$.
3.2.7 There is no suggestion that these hours represent the peak throughout the modelled area. However, for the purposes of the model, they represent a defined hour within the peak and interpeak periods.
3.2.8 A multi user-class assignment has been adopted for the CUBE Voyager model This assigns four vehicle classes to the network, defined as:
- Cars;
- Light Goods Vehicles (LGVs);
- Heavy Goods Vehicles (HGVs); and
- Buses.


### 3.3 Base Trip Matrix Preparation

3.3.1 In order to estimate observed traffic demand patterns a number of 25 by 25 origin/destination base trip matrices were prepared. The RSI data was used as the starting point for the development of the OD matrices. OD tables were produced from data from all the four RSI surveys for each vehicle class and time period. The data from the four separate RSI sites was then merged into one complete OD table for each vehicle class and time period.
3.3.2 The result was a series of demand matrices. However, as is normal with RSI survey information, there were some gaps in the observed movements which to be in-filled. For this purpose the standard Furness trip distribution model was used. The RSI OD 'seed' matrices were input into a series of Furness spreadsheet models ensuring that the seed matrices matched the target flows derived from observed traffic counts, providing a more reliable set of matrices on which the model was built.
3.3.3 Having developed and implemented the different parts of the base year model, they were integrated into a single framework and the relationships within and between the components calibrated.

### 3.4 Assignment Procedure \& Generalised Costs

3.4.1 The assignment procedure in the CUBE Voyager model is an Equilibrium Assignment which, using a set of algorithms, optimally combines a series of assignments such that the ultimate flow pattern reflects the multi-routing evident on the network and satisfying the criterion known as 'Wardrop Equilibrium'.
3.4.2 The assignment process combines as assignment stage and a junction simulation stage. The delay information from the simulation is passed back to the assignment stage where a new trip pattern is derived. The process is iterated until convergence is reached.
3.4.3 The CUBE Voyager model has a number of parameters which can be set to determine when a suitable level of convergence has been reached. Convergence was deemed to be satisfactory at the point where $99 \%$ of link flows changed by less than $1 \%$ between two successive iterations. This resulted in a 'gap' statistic of less than $1 \%$. This 'gap' statistic is equivalent to the 'delta' referred to in DMRB Volume 12 Section 2 Part 1 Appendix I, and the convergence criteria therefore meet the DMRB requirements for both proximity and stability.
3.4.4 Under this condition, traffic is arranged on the network such that the cost of travel on all routes used between an origin/destination pair is equal to the minimum cost of travel and all unused routes have an equal or greater cost. The calculation of generalised cost co-efficients has used the recommended approach in Volume 12 of the DMRB and the example in Volume 13.
3.4.5 There are no tolled roads within the modelled area, so a generalised cost equation based only on time and distance is required. As four vehicle type matrices (cars, LGVs, HGVs and buses) are assigned, it was considered appropriate to reflect the different characteristics of light and heavy vehicles through the use of separate generalised cost equations.
3.4.6 Following the example given in DMRB Volume 13 Section 2, the generalised cost equations can be summarised as follows:
$\begin{array}{ll}\text { - } & \text { Cars } \\ \text { - LGVs } & 1.00 \times \text { time }+0.54 \times \text { distance; } \\ \text { - } & 1.00 \times \text { time }+0.54 \times \text { distance; } \\ \text { - Buses } & 1.00 \times \text { time }+2.91 \text { distance; and } \\ & 1.00 \times \text { time }+2.91 \text { distance } .\end{array}$

### 3.5 Traffic Growth Forecasts

3.5.1 Future traffic flows for the base network were estimated for 2010 and 2025 i.e. the expected opening year for the scheme and the design year. The estimated future flows were calculated using TEMPRO growth factors. The 2007 traffic flows were split into cars, Light Goods Vehicles (LGVs), Heavy Goods Vehicles (HGVs) and buses, and the appropriate growth factors applied to each vehicle category. The growth factors derived from TEMPRO and applied to the 2007 traffic matrices were 1.03 for 2010 and 1.11 for 2025.
3.5.2 At the time of the model build and calibration, there were no known committed developments or land use changes likely to have a significant effect on traffic flows within the study area. Therefore only flows from the TEMPRO growth factors were added to the 2005 flows to obtain predicted flows for 2010 and 2025.
3.5.3 It should be noted that the predicted future flows, especially those for 2025 , are in reality unlikely to occur on the existing road network as in many locations they are above the capacity of the existing roads. However as the CUBE Voyager software uses demand modelling, the predicted future flows must be based on unrestrained growth.

### 3.6 Model Calibration Tests

## Model Convergence

3.6.1 Within the assignment, a number of loadings are undertaken until such time as defined criteria are met. The resulting Equilibrium Assignment is designed to fulfil Wardrop's First Principle that for any origin/destination pair, all used routes have equal generalised costs while unused routes have equal or greater costs. The CUBE Voyager model produces a number of convergence statistics for the assignment. This includes the difference between costs on chosen routes and costs on minimum routes, summed across the whole network, and expressed as a unit of minimum costs (RAAD, delta $\Delta$ ).
3.6.2 This tends to decrease towards a minimum value as the number of iterations increases. For the assignment loop, the main indicator of convergence is a total network wide value of RAAD, which does not change by less than as certain value (here 0.005 ) between successive iterations.
3.6.3 A high level of convergence was achieved in all time periods, with statistics as presented in Table 3.1.

## Table 3.1: $\quad$ Convergence Statistics

| Time Period | Assignment ( $\mathbf{\Delta}$ ) |
| :---: | :---: |
| AM Peak | 0.00193 |
| Inter-Peak | 0.00179 |
| PM Peak | 0.00175 |

## Regression Analysis Tests

3.6.4 For each time period the model was calibrated to individual link flows, and all available count datasets were input to each run of the model. For a perfect fit, $\mathrm{R}^{2}$ should tend to one in each case although anything greater than 0.75 was considered reasonable for the size of the model.
3.6.5 A comparison of modelled and observed flows using regression analysis produced satisfactory results as presented in Table 3.2.

## TEE Appraisal of Full Dualling of A9

Appraisal Report

Table 3.2: Regression Analysis Results

| Time Period | $\mathbf{R}^{\mathbf{2}}$ |
| :---: | :---: |
| AM Peak | 0.88 |
| Inter-Peak | 0.86 |
| PM Peak | 0.82 |

3.6.6 The Figures (right and below right) show the graphical plots of the regression analysis for the AM peak, Interpeak and PM peak with the best-fit straight line and $\mathrm{R}^{2}$ value.
3.6.7 The plots clearly illustrate the close fit of the curve to the data points for each time periods, with values well over 0.75 . This suggests that both observed and modelled outputs are closely correlated for all three time periods.
3.6.8 The best fit is for the AM peak hour, but the differences in $\mathrm{R}^{2}$ values are so small between the time periods that for practical purposes they can be ignored.

## Logic Checks

3.6.9 A series of range and logic checks were carried out including:

- movement logic checks;
- directions of trip flows;
- travel times, distances and speeds; and
- network connectivity.


## Goodness-of-Fit Tests

3.6.10 In accordance with standard modelling practices and Government advice, a series of statistical goodness-of-fit tests was carried out comparing predicted against observed flows. Any discrepancies were investigated and remedial measures carried out. As recommended in Government Guidance, the GEH statistic was used:

$$
G E H=\sqrt{\frac{\left(V_{2}-V_{1}\right)^{2}}{\left(V_{1}+V_{2}\right) / 2}}
$$

Wh



3.6.11 This statistical goodness-of-fit test was carried out for various sites in the model area, which capture observed movements in November 2007. Various iterations were undertaken, which involved carrying out statistical tests and making improvements to the highway assignment model, until a suitable level of fit was achieved.
3.6.12 Acceptability Guidelines for GEH values are usually 5.0 for much smaller (local) models. For a model area as large as this it would seem reasonable to aim for a value of 10.0. The reason for this is that the guidelines are for guidance purposes only, and are not rigid. There does not appear to be any indication in DMRB as to where these guidelines are derived from.
3.6.13 Furthermore the unit of flow in GEH statistics is vehicles per hour. Since the GEH statistic is not unit free, different guideline values will be relevant if units of flow are different from vehicles per hour. The units for GEH are the square root of flow, so that for example with a pcu/vehicle ratio of about 1.2 the GEH guideline value moves from 5.0 to 5.5 . The scale of the study is also highly relevant.
3.6.14 For each time period, 90 links in the model network were assessed using the standard GEH calculation. The analysis showed:

- in the AM peak, about $92 \%$ of the links met the GEH criteria with an average network-wide GEH value of $2.84 \%$;
- in the Interpeak, $89 \%$ of the model links achieved the GEH criteria with a network-wide average of $4.12 \%$; and
- in the PM peak, $94 \%$ of the links satisfied the GEH criteria with an average GEH result of $3.05 \%$ across the network.
3.6.15 As can be seen from the above, the average GEH value for each time period was below 10.0 which was considered acceptable given the points identified in Paragraphs 3.6.7 and 3.6.8 above. Appendix A contains the calculations for each link over each time period.


## Modelled Flows

3.6.16 The modelled flows are shown in the Figure (right). This Figure clearly indicates the flows on the single carriageway alignments (blue) with those on the dual carriageway alignments (grey) and the short WS+1 alignments (red). The green flows are those connecting the end of the A9 to the regions outside the immediate A9 zones (i.e. with the rest of the country).


## 4. ECONOMIC APPRAISAL RESULTS

### 4.1 Application of the Traffic Model

4.1.1 The CUBE Voyager model estimates the reductions in journey times across the various roads in the modelled network. These are simulated for the AM, inter-peak and PM peak periods to reflect different travel patterns of the day. Similarly, the model also estimates the journey distances travelled across the network. These estimates of time and distance are annualised using expansion factors to give the annual equivalents.
4.1.2 The CUBE Voyager model is not re-assigning flows because this is a linear scheme, nor is it capping flows to road capacity levels. The CUBE Voyager model is therefore showing the unrestrained demand that would occur if the road was assumed to be able to absorb the increase in traffic flows. Both the base and the test flows are demand flows, that is, they represent the traffic that would like to be using the road in the assignment hours. The Cube Voyager model calculates the impacts of the forecast traffic flows in the network, the results of which are fed into the economic appraisal which is discussed below.

### 4.2 Appraisal Assumptions

4.2.1 The Department for Transport's Transport User Benefits Appraisal (TUBA) program was used to undertake the Transport Economic Efficiency (TEE) appraisal of the Full Dualling Option. The specific economic assumptions and cost adjustments are consistent with the Government's Scottish Transport Appraisal Guidance (STAG)/webTAG appraisal convention.
4.2.2 All monetary values are in market prices, and values are discounted to the base year 2002, as adopted in TUBA. The test discount rate is $3.5 \%$ for project years 1 to 30 , and $3 \%$ thereafter. An appraisal period of 60 years (as per webTAG procedures) has been adopted, with a first year construction year (opening year) in 2010, and a horizon year (final appraisal year) in 2069. The modelled years are from 2010 and 2025.
4.2.3 This assessment is only a partial appraisal, with only the benefits of the Full Dualling option taken account of, and not the costs. Therefore the assumptions relating to costs such as risk and optimism bias do not apply. Only the benefits are presented here.

### 4.3 Appraisal Results

4.3.1 The results of the TUBA appraisal on monetised benefits are shown in Table 4.1. From these, it will be possible to gain an insight into the economic efficiency of the scheme.
4.3.2 Table 4.1 demonstrates that the predominant benefits are those associated with traveltime savings. Savings on vehicle operating costs are also a feature of the benefits, although they are less prominent than travel time benefits.

Table 4.1: $\quad$ Summary of Present Value of Benefits

| Benefits | Value (£000) |
| :--- | :--- |
| User Benefits (Consumers) | $£ 582,512$ |
| User Benefits (Businesses) | $£ 594,083$ |
| Accident Benefits | Not assessed by TUBA |
| Carbon Benefits | $-£ 3,285$ |
| Net Present Value of Benefits (PVB) | $£ 1,173,310$ |

[^4]4.3.3 The PVBs for the Full Dualling Option are therefore $£ 1,173$ million in 2002 prices It should however be observed that the TUBA estimates PVBs in 2002 prices while the original SIA Study had a price base of 2005. Therefore this is not an exact like-for-like comparison. However, applying a growth rate of $3.5 \%$ per annum to 2005 would increase the above PVB to approximately $£ 1,301$ million at 2005 levels. This equates reasonably closely to the GVA estimates over 60 years as estimated in the previous studies' High-Level Estimates Technical Note ${ }^{6}$. A printout of the TUBA model is shown in Appendix B.

## Targeted Dualling of Sections of the A9

4.3.4 The above results relate to the Full Dualling Option, however the original SIA Study also examined a Partial (Strategic) Dualling Option. In the original GVA calculations it was assumed that the Partial (Strategic) Dualling Option would provide approximately two-thirds of the time benefits as the Full Dualling Option.
4.3.5 However, it is possible to carry out a high-level appraisal of the potential benefits which could be gained by dualling a targeted number of sections of the A9 as identified in Table 4.2 below. This was based on a pro rata of time savings at each section of the A9 against the total saving along the whole route, multiplied by the total PVB. The Table clearly shows that the greatest benefits could be gained by dualling the section between Kingussie junction and the Aviemore North junction indicating a PVB of $£ 17.4$ million per kilometre in 2002 prices, followed by the section between Aviemore North junction and Slochd which returns a PVB per kilometre of $£ 12.8$ million per kilometre in 2002 prices. The section with the least benefits per kilometre is between Slochd/Tomatin and Inverness (a PVB of $£ 3.6$ million $/ \mathrm{km}$ ). The section from Perth to Drumochter is outside the HITRANS area and also is being developed as part of the Perth to Blair Atholl proposals, hence we have not included an analysis along this section of the A9.

## Table 4.2: $\quad$ Analysis of PVBs at Targeted Sections

| Link | PVB (£000) | PVB (£000) <br> Per km | Ranking |
| :---: | :---: | :---: | :---: |
| Perth to Drumochter d/c <br> (Dalnacardoch lodge) | $£ 318,610$ | Outwith HITRANS area |  |
| Drumochter d/c (Dalnaspidal lodge) <br> to Dalwhinnie junction (A889) | $£ 124,300$ | $£ 12,070$ | 3 |
| Dalwhinnie junction to Kingussie <br> junction (A86) | $£ 124,300$ | $£ 5,470$ | 4 |
| Kingussie junction to Aviemore <br> north junction (A95) | $£ 373,000$ | $£ 17,430$ | 1 |
| Aviemore north to Slochd d/c | $£ 202,000$ | $£ 12,790$ | 2 |
| Slochd d/c (Tomatin) to Inverness | $£ 31,100$ | $£ 3,570$ | 5 |

Note: all figures are at 2002 prices, as per TUBA
4.3.6 The ranking column in the above table suggests the potential order of implementing any strategic dualling along the A9.

[^5]
## 5 CONCLUSIONS

### 5.1 Introduction

5.1.1 The A9 is the main trunk route from the central belt to the Highlands and Islands and as such has been assessed as having the highest level of functionality of any transport link in the region. It is also a lifeline route to the north of Scotland and the peripheral islands. Growth in the study area has been consistently better than that of Scotland as a whole, but remains substantially worse off in terms of GVA per capita.
5.1.2 Upgrading the A9 is seen as an opportunity to close this 'wealth gap', particularly given the increasing importance of the route linking communities on the route and connecting to the wider economy. There is a growing perception that competitiveness and continuing economic success of the sub-region cannot be guaranteed without this investment in the A9, in particular either in dualling key sections of the route, or dualling the entire route between Inverness and Perth.
5.1.3 The purpose of this report is to further quantify the economic benefits of the Full Dualling Option of the A9 trunk road between Perth and Inverness identified in the earlier SIA/EALI report. In this way this study complements the earlier study by serving to buttress the wider benefits discussed in the earlier study. However, this is only a partial appraisal, as no cost estimates have been prepared and included in the assessment. Only the present values of benefits (PVBs) have been estimated.

### 5.2 Model Development

5.2.1 The traffic modelling for the A9 TEE Appraisal was carried out using the CUBE Voyager computer software. This is an industry-standard computer program used to examine proposed improvements in the road networks. The operation of the CUBE Voyager model, based on a Fixed Matrix assignment, allows forecasts based on growth factors derived from other programmes such as TEMPRO, which was used in this assessment for traffic growth forecasts for 2010 and 2025.
5.2.2 The area modelled was divided into 25 zones. 21 of the zones covered the entire route and adjacent areas between Inverness and Perth. The remaining zones (zones 22 to 25) linked to the rest of the country. The A9 was modelled as a single carriageway, a wide single carriageway and as a dual carriageway, where appropriate. Every link was modelled in two directions, and speed limits were based on the actual speed limits on the existing road, 60 mph on the A9. The AM peak, Interpeak and PM peak periods were modelled, and four vehicle classes were assigned to the network: cars, LGVs, HGVs and buses.
5.2.3 The RSI data was used for the development of the 25 by 25 origin/destination 2007 base trip matrices. These were further refined to ensure a more reliable set of matrices on which to build the model. The model was subjected to a number of calibration tests, including model convergence, regression analysis and statistical goodness-of-fit tests, and was assessed as being suitable for the modelling requirements.

### 5.3 TEE Results

5.3.1 The Department for Transport's Transport User Benefits Appraisal (TUBA) program was used to undertake the appraisal of the Full Dualling Option for the modelled years, 2010 and 2025. This adopted the standard appraisal parameters in line with the Government's appraisal convention. However, this assessment is only a partial appraisal, and does not take into account the costs of the investment. The PVBs for the Full Dualling Option are calculated as $£ 1,173$ million in 2002 prices and $£ 1,301$ million in 2005 prices.

## Appendix A

## GEH Model Calibration Tests Results

| Ref | Location | A-Node | B-Node |  | Flow (vehs) |  | Obs - Mod | Percent <br> Diff. | GEH Stat. | Criteria Tests |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Observed | Modelled |  |  |  | GEH | Flow |
| Calibration Links - AM Peak Hour |  |  |  |  |  |  |  |  |  |  |  |
| 1 | A9 Inverness | 1000 | 1010 | 10001010 | 1,433 | 1,361 | -72 | -5.00 | 1.9 | $\checkmark$ | $\checkmark$ |
| 2 | A9 Inverness | 1010 | 1000 | 10101000 | 1,818 | 1,754 | -64 | -3.53 | 1.5 | $\checkmark$ | $\checkmark$ |
| 3 | A9 | 1010 | 1020 | 10101020 | 819 | 1,065 | 246 | 30.06 | 8.0 | $\checkmark$ | $x$ |
| 4 | A9 | 1040 | 1010 | 10401010 | 834 | 1,412 | 578 | 69.26 | 17.2 | $\times$ | $\times$ |
| 5 | A96 | 1050 | 1060 | 10501060 | 1,534 | 1,492 | -42 | -2.72 | 1.1 | $\checkmark$ | $\checkmark$ |
| 6 | A96 | 1060 | 1070 | 10601070 | 1,534 | 1,492 | -42 | -2.72 | 1.1 | $\checkmark$ | $\checkmark$ |
| 7 | A96 | 1060 | 1050 | 10601050 | 823 | 776 | -47 | -5.71 | 1.7 | $\checkmark$ | $\checkmark$ |
| 8 | A96 | 1090 | 1060 | 10901060 | 823 | 776 | -47 | -5.71 | 1.7 | $\checkmark$ | $\checkmark$ |
| 9 | A82 | 1100 | 1110 | 11001110 | 274 | 275 | 1 | 0.40 | 0.1 | $\checkmark$ | $\checkmark$ |
| 10 | A82 | 1110 | 1100 | 11101100 | 1,186 | 1,190 | 4 | 0.35 | 0.1 | $\checkmark$ | $\checkmark$ |
| 11 | A82 | 1110 | 1130 | 11101130 | 274 | 275 | 1 | 0.40 | 0.1 | $\checkmark$ | $\checkmark$ |
| 12 | A82 | 1140 | 1110 | 11401110 | 1,186 | 1,190 | 4 | 0.35 | 0.1 | $\checkmark$ | $\checkmark$ |
| 13 | B8082 | 1220 | 1240 | 12201240 | 317 | 315 | -2 | -0.50 | 0.1 | $\checkmark$ | $\checkmark$ |
| 14 | B8082 | 1240 | 1220 | 12401220 | 786 | 790 | 4 | 0.47 | 0.1 | $\checkmark$ | $\checkmark$ |
| 15 | A9 South of Inverness | 1260 | 1290 | 12601290 | 1,689 | 1,861 | 172 | 10.18 | 4.1 | $\checkmark$ | $\checkmark$ |
| 16 | A9 South of Inverness | 1280 | 1290 | 12801290 | 1,625 | 1,988 | 363 | 22.36 | 8.5 | $\checkmark$ | $x$ |
| 17 | A9 South of Inverness | 1290 | 1260 | 12901260 | 1,606 | 1,978 | 372 | 23.17 | 8.8 | $\checkmark$ | $x$ |
| 18 | A9 South of Inverness | 1290 | 1280 | 12901280 | 1,519 | 1,874 | 355 | 23.40 | 8.6 | $\checkmark$ | $x$ |
| 19 | B9177 | 1290 | 1320 | 12901320 | 57 | 56 | -1 | -2.28 | 0.2 | $\checkmark$ | $\checkmark$ |
| 20 | B9177 | 1290 | 1310 | 12901310 | 49 | 51 | 2 | 3.06 | 0.2 | $\checkmark$ | $\checkmark$ |
| 21 | B9177 | 1310 | 1290 | 13101290 | 82 | 77 | -5 | -6.59 | 0.6 | $\checkmark$ | $\checkmark$ |
| 22 | B9177 | 1320 | 1290 | 13201290 | 37 | 33 | -4 | -11.62 | 0.7 | $\checkmark$ | $\checkmark$ |
| 23 | B9154 | 1370 | 1460 | 13701460 | 40 | 37 | -3 | -7.75 | 0.5 | $\checkmark$ | $\checkmark$ |
| 24 | B9154 | 1410 | 1460 | 14101460 | 41 | 50 | 9 | 21.46 | 1.3 | $\checkmark$ | $\checkmark$ |
| 25 | A9 Craggie | 1430 | 1480 | 14301480 | 30 | 26 | -4 | -12.00 | 0.7 | $\checkmark$ | $\checkmark$ |
| 26 | B9154 | 1460 | 1370 | 14601370 | 53 | 50 | -3 | -6.04 | 0.4 | $\checkmark$ | $\checkmark$ |
| 27 | B9154 | 1460 | 1410 | 14601410 | 33 | 37 | 4 | 11.82 | 0.7 | $\checkmark$ | $\checkmark$ |
| 28 | B851 | 1480 | 1430 | 14801430 | 74 | 71 | -4 | -4.73 | 0.4 | $\checkmark$ | $\checkmark$ |
| 29 | B851 | 1480 | 1490 | 14801490 | 30 | 26 | -4 | -12.00 | 0.7 | $\checkmark$ | $\checkmark$ |
| 30 | B851 | 1490 | 1480 | 14901480 | 74 | 71 | -4 | -4.73 | 0.4 | $\checkmark$ | $\checkmark$ |
| 31 | B851 | 1490 | 1500 | 14901500 | 30 | 26 | -4 | -12.00 | 0.7 | $\checkmark$ | $\checkmark$ |
| 32 | B851 | 1500 | 1490 | 15001490 | 74 | 71 | -4 | -4.73 | 0.4 | $\checkmark$ | $\checkmark$ |
| 33 | B851 | 1500 | 1510 | 15001510 | 30 | 26 | -4 | -12.00 | 0.7 | $\checkmark$ | $\checkmark$ |
| 34 | B851 | 1510 | 1500 | 15101500 | 74 | 71 | -4 | -4.73 | 0.4 | $\checkmark$ | $\checkmark$ |
| 35 | A938 | 1640 | 1780 | 16401780 | 10 | 4 | -6 | -61.00 | 2.3 | $\checkmark$ | $\checkmark$ |
| 36 | A9 | 1700 | 1710 | 17001710 | 241 | 262 | 21 | 8.59 | 1.3 | $\checkmark$ | $\checkmark$ |
| 37 | - | 1710 | 1700 | 17101700 | 297 | 264 | -34 | -11.28 | 2.0 | $\checkmark$ | $\checkmark$ |
| 38 | - | 1710 | 1720 | 17101720 | 148 | 150 | 2 | 1.49 | 0.2 | $\checkmark$ | $\checkmark$ |
| 39 | - | 1710 | 1740 | 17101740 | 116 | 117 | 1 | 0.69 | 0.1 | $\checkmark$ | $\checkmark$ |
| 40 | - | 1720 | 1710 | 17201710 | 124 | 123 | -1 | -0.73 | 0.1 | $\checkmark$ | $\checkmark$ |
| 41 | - | 1740 | 1710 | 17401710 | 149 | 146 | -3 | -2.21 | 0.3 | $\checkmark$ | $\checkmark$ |
| 42 | - | 1780 | 1640 | 17801640 | 9 | 5 | -4 | -46.67 | 1.6 | $\checkmark$ | $\checkmark$ |
| 43 | A938 | 1780 | 1790 | 17801790 | 6 | 3 | -3 | -50.00 | 1.4 | $\checkmark$ | $\checkmark$ |
| 44 | A938 | 1780 | 1800 | 17801800 | 4 | 1 | -3 | -77.50 | 2.0 | $\checkmark$ | $\checkmark$ |
| 45 | A938 | 1790 | 1780 | 17901780 | 5 | 2 | -3 | -60.00 | 1.6 | $\checkmark$ | $\checkmark$ |
| 46 | A938 | 1800 | 1780 | 18001780 | 5 | 3 | -2 | -44.00 | 1.1 | $\checkmark$ | $\checkmark$ |
| 47 | A9 Aviemore | 1840 | 1870 | 18401870 | 1,306 | 1,932 | 626 | 47.94 | 15.6 | $\times$ | $x$ |
| 48 | A95 | 1840 | 1910 | 18401910 | 145 | 141 | -4 | -2.76 | 0.3 | $\checkmark$ | $\checkmark$ |
| 49 | A95 | 1850 | 1910 | 18501910 | 201 | 201 | 0 | 0.10 | 0.0 | $\checkmark$ | $\checkmark$ |
| 50 | A9 Aviemore | 1870 | 1840 | 18701840 | 2007 AMA, 5 Padse | 1,926 | 419 | 27.82 | 10.1 | $x$ | $x$ |


|  | Location | A-Node | B-Node |  | Flow (vehs) |  | Obs - Mod | Percent Diff. | GEH Stat. | Criteria Tests |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Observed | Modelled |  |  |  | GEH | Flow |
| 51 | B9152 | 1900 | 3182 | 19003182 | 326 | 532 | 206 | 63.19 | 9.9 | $\checkmark$ | x |
| 52 | B9152 | 1900 | 2080 | 19002080 | 52 | 5 | -47 | -90.38 | 8.8 | $\checkmark$ | $\checkmark$ |
| 53 | A95 | 1910 | 1850 | 19101850 | 141 | 141 | 0 | 0.00 | - | $\checkmark$ | $\checkmark$ |
| 54 | A95 | 1910 | 1840 | 19101840 | 129 | 201 | 72 | 55.97 | 5.6 | $\checkmark$ | $\checkmark$ |
| 55 | B9152 | 1910 | 1920 | 19101920 | 59 | 3 | -56 | -94.92 | 10.1 | $\times$ | $\checkmark$ |
| 56 | B9152 | 1920 | 1910 | 19201910 | 47 | 1 | -46 | -97.87 | 9.4 | $\checkmark$ | $\checkmark$ |
| 57 | B9152 | 2080 | 1900 | 20801900 | 59 | 4 | -55 | -93.22 | 9.8 | $\checkmark$ | $\checkmark$ |
| 58 | A889 | 2270 | 2280 | 22702280 | 19 | 15 | -4 | -21.05 | 1.0 | $\checkmark$ | $\checkmark$ |
| 59 | A889 | 2280 | 2270 | 22802270 | 31 | 27 | -4 | -14.19 | 0.8 | $\checkmark$ | $\checkmark$ |
| 60 | A923 | 2810 | 2860 | 28102860 | 423 | 430 | 7 | 1.58 | 0.3 | $\checkmark$ | $\checkmark$ |
| 61 | Dunkeld | 2810 | 2820 | 28102820 | 304 | 308 | 4 | 1.28 | 0.2 | $\checkmark$ | $\checkmark$ |
| 62 | Dunkeld | 2810 | 2800 | 28102800 | 109 | 201 | 92 | 84.40 | 7.4 | $\checkmark$ | $\checkmark$ |
| 63 | A822 | 2820 | 2810 | 28202810 | 344 | 347 | 3 | 0.76 | 0.1 | $\checkmark$ | $\checkmark$ |
| 64 | A822 | 2820 | 2830 | 28202830 | 304 | 308 | 4 | 1.28 | 0.2 | $\checkmark$ | $\checkmark$ |
| 65 | A822 | 2830 | 2820 | 28302820 | 344 | 347 | 3 | 0.76 | 0.1 | $\checkmark$ | $\checkmark$ |
| 66 | A822 | 2830 | 2840 | 28302840 | 304 | 308 | 4 | 1.28 | 0.2 | $\checkmark$ | $\checkmark$ |
| 67 | A822 | 2840 | 2830 | 28402830 | 344 | 347 | 3 | 0.76 | 0.1 | $\checkmark$ | $\checkmark$ |
| 68 | A822 | 2840 | 2850 | 28402850 | 304 | 308 | 4 | 1.28 | 0.2 | $\checkmark$ | $\checkmark$ |
| 69 | A822 | 2850 | 2840 | 28502840 | 344 | 347 | 3 | 0.76 | 0.1 | $\checkmark$ | $\checkmark$ |
| 70 | A923 | 2860 | 2870 | 28602870 | 423 | 430 | 7 | 1.58 | 0.3 | $\checkmark$ | $\checkmark$ |
| 71 | A822 | 2860 | 2810 | 28602810 | 405 | 411 | 6 | 1.51 | 0.3 | $\checkmark$ | $\checkmark$ |
| 72 | A923 | 2870 | 2880 | 28702880 | 423 | 430 | 7 | 1.58 | 0.3 | $\checkmark$ | $\checkmark$ |
| 73 | A923 | 2870 | 2860 | 28702860 | 407 | 411 | 4 | 1.01 | 0.2 | $\checkmark$ | $\checkmark$ |
| 74 | A923 | 2880 | 2870 | 28802870 | 407 | 411 | 4 | 1.01 | 0.2 | $\checkmark$ | $\checkmark$ |
| 75 | B867 | 2940 | 2970 | 29402970 | 304 | 310 | 6 | 1.97 | 0.3 | $\checkmark$ | $\checkmark$ |
| 76 | B867 | 2970 | 2940 | 29702940 | 716 | 720 | 4 | 0.54 | 0.1 | $\checkmark$ | $\checkmark$ |
| 77 | A9 Bankfoot | 3020 | 2940 | 30202940 | 1,191 | 1,646 | 455 | 38.17 | 12.1 | $x$ | $x$ |
| 78 | A9 | 3090 | 3100 | 30903100 | 1,559 | 2,011 | 452 | 28.97 | 10.7 | $x$ | $x$ |
| 79 | A85 | 3100 | 3160 | 31003160 | 1,068 | 1,007 | -61 | -5.70 | 1.9 | $\checkmark$ | $\checkmark$ |
| 80 |  | 3100 | 3110 | 31003110 | 610 | 613 | 3 | 0.51 | 0.1 | $\checkmark$ | $\checkmark$ |
| 81 | A85 | 3110 | 3120 | 31103120 | 610 | 613 | 3 | 0.51 | 0.1 | $\checkmark$ | $\checkmark$ |
| 82 | A85 | 3110 | 3100 | 31103100 | 472 | 475 | 3 | 0.61 | 0.1 | $\checkmark$ | $\checkmark$ |
| 83 | A85 | 3120 | 3130 | 31203130 | 610 | 613 | 3 | 0.51 | 0.1 | $\checkmark$ | $\checkmark$ |
| 84 | A85 | 3120 | 3110 | 31203110 | 472 | 475 | 3 | 0.61 | 0.1 | $\checkmark$ | $\checkmark$ |
| 85 | A85 | 3130 | 3120 | 31303120 | 472 | 475 | 3 | 0.61 | 0.1 | $\checkmark$ | $\checkmark$ |
| 86 |  | 3140 | 3150 | 31403150 | 1,319 | 1,321 | 2 | 0.14 | 0.1 | $\checkmark$ | $\checkmark$ |
| 87 | A85 | 3140 | 3100 | 31403100 | 831 | 835 | 4 | 0.52 | 0.1 | $\checkmark$ | $\checkmark$ |
| 88 |  | 3150 | 3140 | 31503140 | 831 | 835 | 4 | 0.52 | 0.1 | $\checkmark$ | $\checkmark$ |
| 89 | Perth | 3160 | 3100 | 31603100 | 1,326 | 1,266 | -60 | -4.53 | 1.7 | $\checkmark$ | $\checkmark$ |
| 90 | A9 North of Kingussie | 3182 | 1900 | 31821900 | 319 | 1,926 | 1607 | 503.82 | 48.0 | $\times$ | $\times$ |
|  |  |  | Totals |  | 43,923 | 49,332 | 5409.25 | 2.18 | 2.84 | 92\% | 88\% |


| Ref | Location | A-Node | B-Node |  | Flow (vehs) |  | Obs - Mod | Percent Diff. | GEH Stat. | Criteria Tests |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Observed | Modelled |  |  |  | GEH | Flow |
| Calibration Links - Inter Peak Hour |  |  |  |  |  |  |  |  |  |  |  |
| 1 | A9 Inverness | 1000 | 1010 | 10001010 | 1,895 | 1,629 | -266 | -14.05 | 6.3 | $\checkmark$ | $\checkmark$ |
| 2 | A9 Inverness | 1010 | 1000 | 10101000 | 1,789 | 1,595 | -194 | -10.85 | 4.7 | $\checkmark$ | $\checkmark$ |
| 3 | A9 | 1010 | 1020 | 10101020 | 1,195 | 1,319 | 124 | 10.33 | 3.5 | $\checkmark$ | $\checkmark$ |
| 4 | A9 | 1040 | 1010 | 10401010 | 1,099 | 1,295 | 196 | 17.86 | 5.7 | $\checkmark$ | $x$ |
| 5 | A96 | 1050 | 1060 | 10501060 | 1,528 | 1,382 | -146 | -9.53 | 3.8 | $\checkmark$ | $\checkmark$ |
| 6 | A96 | 1060 | 1070 | 10601070 | 1,528 | 1,382 | -146 | -9.53 | 3.8 | $\checkmark$ | $\checkmark$ |
| 7 | A96 | 1060 | 1050 | 10601050 | 1,115 | 1,059 | -56 | -5.02 | 1.7 | $\checkmark$ | $\checkmark$ |
| 8 | A96 | 1090 | 1060 | 10901060 | 1,115 | 1,059 | -56 | -5.02 | 1.7 | $\checkmark$ | $\checkmark$ |
| 9 | A82 | 1100 | 1110 | 11001110 | 477 | 415 | -62 | -13.08 | 3.0 | $\checkmark$ | $\checkmark$ |
| 10 | A82 | 1110 | 1100 | 11101100 | 980 | 1,110 | 130 | 13.23 | 4.0 | $\checkmark$ | $\checkmark$ |
| 11 | A82 | 1110 | 1130 | 11101130 | 408 | 415 | 7 | 1.62 | 0.3 | $\checkmark$ | $\checkmark$ |
| 12 | A82 | 1140 | 1110 | 11401110 | 1,049 | 1,110 | 61 | 5.79 | 1.8 | $\checkmark$ | $\checkmark$ |
| 13 | B8082 | 1220 | 1240 | 12201240 | 96 | 118 | 22 | 23.13 | 2.1 | $\checkmark$ | $\checkmark$ |
| 14 | B8082 | 1240 | 1220 | 12401220 | 706 | 706 | -0 | -0.04 | 0.0 | $\checkmark$ | $\checkmark$ |
| 15 | A9 South of Inverness | 1260 | 1290 | 12601290 | 1,837 | 2,064 | 227 | 12.33 | 5.1 | $\checkmark$ | $\checkmark$ |
| 16 | A9 South of Inverness | 1280 | 1290 | 12801290 | 1,439 | 1,782 | 343 | 23.84 | 8.5 | $\checkmark$ | $\times$ |
| 17 | A9 South of Inverness | 1290 | 1260 | 12901260 | 1,591 | 1,814 | 223 | 14.01 | 5.4 | $\checkmark$ | $\checkmark$ |
| 18 | A9 South of Inverness | 1290 | 1280 | 12901280 | 1,894 | 2,028 | 134 | 7.07 | 3.0 | $\checkmark$ | $\checkmark$ |
| 19 | B9177 | 1290 | 1320 | 12901320 | 69 | 80 | 11 | 16.38 | 1.3 | $\checkmark$ | $\checkmark$ |
| 20 | B9177 | 1290 | 1310 | 12901310 | 57 | 40 | -17 | -29.12 | 2.4 | $\checkmark$ | $\checkmark$ |
| 21 | B9177 | 1310 | 1290 | 13101290 | 81 | 95 | 14 | 16.91 | 1.5 | $\checkmark$ | $\checkmark$ |
| 22 | B9177 | 1320 | 1290 | 13201290 | 26 | 22 | -4 | -13.85 | 0.7 | $\checkmark$ | $\checkmark$ |
| 23 | B9154 | 1370 | 1460 | 13701460 | 16 | 19 | 3 | 20.63 | 0.8 | $\checkmark$ | $\checkmark$ |
| 24 | B9154 | 1410 | 1460 | 14101460 | 10 | 18 | 8 | 79.00 | 2.1 | $\checkmark$ | $\checkmark$ |
| 25 | A9 Craggie | 1430 | 1480 | 14301480 | 38 | 27 | -11 | -28.16 | 1.9 | $\checkmark$ | $\checkmark$ |
| 26 | B9154 | 1460 | 1370 | 14601370 | 10 | 18 | 8 | 79.00 | 2.1 | $\checkmark$ | $\checkmark$ |
| 27 | B9154 | 1460 | 1410 | 14601410 | 16 | 19 | 3 | 20.63 | 0.8 | $\checkmark$ | $\checkmark$ |
| 28 | B851 | 1480 | 1430 | 14801430 | 49 | 30 | -19 | -38.57 | 3.0 | $\checkmark$ | $\checkmark$ |
| 29 | B851 | 1480 | 1490 | 14801490 | 38 | 27 | -11 | -28.16 | 1.9 | $\checkmark$ | $\checkmark$ |
| 30 | B851 | 1490 | 1480 | 14901480 | 49 | 30 | -19 | -38.57 | 3.0 | $\checkmark$ | $\checkmark$ |
| 31 | B851 | 1490 | 1500 | 14901500 | 38 | 27 | -11 | -28.16 | 1.9 | $\checkmark$ | $\checkmark$ |
| 32 | B851 | 1500 | 1490 | 15001490 | 49 | 30 | -19 | -38.57 | 3.0 | $\checkmark$ | $\checkmark$ |
| 33 | B851 | 1500 | 1510 | 15001510 | 38 | 27 | -11 | -28.16 | 1.9 | $\checkmark$ | $\checkmark$ |
| 34 | B851 | 1510 | 1500 | 15101500 | 49 | 30 | -19 | -38.57 | 3.0 | $\checkmark$ | $\checkmark$ |
| 35 | A938 | 1640 | 1780 | 16401780 | 17 | 15 | -2 | -9.41 | 0.4 | $\checkmark$ | $\checkmark$ |
| 36 | A9 | 1700 | 1710 | 17001710 | 75 | 133 | 58 | 77.07 | 5.7 | $\checkmark$ | $\checkmark$ |
| 37 | - | 1710 | 1700 | 17101700 | 68 | 131 | 63 | 92.35 | 6.3 | $\checkmark$ | $\checkmark$ |
| 38 | - | 1710 | 1720 | 17101720 | - | 67 | 67 | 0.00 | 11.6 | $x$ | $\checkmark$ |
| 39 | - | 1710 | 1740 | 17101740 | - | 68 | 68 | 0.00 | 11.7 | $x$ | $\checkmark$ |
| 40 | - | 1720 | 1710 | 17201710 | - | 69 | 69 | 0.00 | 11.8 | $x$ | $\checkmark$ |
| 41 | - | 1740 | 1710 | 17401710 | - | 64 | 64 | 0.00 | 11.3 | $\times$ | $\checkmark$ |
| 42 | - | 1780 | 1640 | 17801640 | 14 | 10 | -4 | -28.57 | 1.2 | $\checkmark$ | $\checkmark$ |
| 43 | A938 | 1780 | 1790 | 17801790 | - | 6 | 6 | 0.00 | 3.5 | $\checkmark$ | $\checkmark$ |
| 44 | A938 | 1780 | 1800 | 17801800 | - | 9 | 9 | 0.00 | 4.3 | $\checkmark$ | $\checkmark$ |
| 45 | A938 | 1790 | 1780 | 17901780 | - | 5 | 5 | 0.00 | 3.1 | $\checkmark$ | $\checkmark$ |
| 46 | A938 | 1800 | 1780 | 18001780 | - | 5 | 5 | 0.00 | 3.3 | $\checkmark$ | $\checkmark$ |
| 47 | A9 Aviemore | 1840 | 1870 | 18401870 | 1,293 | 2,006 | 713 | 55.14 | 17.6 | $x$ | $x$ |
| 48 | A95 | 1840 | 1910 | 18401910 | 58 | 58 | 0 | 0.17 | 0.0 | $\checkmark$ | $\checkmark$ |
| 49 | A95 | 1850 | 1910 | 18501910 | 58 | 67 | 9 | 14.66 | 1.1 | $\checkmark$ | $\checkmark$ |
| 50 | A9 Aviemore | 1870 | 1840 | 18701840 | 2007 IP1 ${ }^{\text {B885e }}$ | 1,758 | 473 | 36.78 | 12.1 | $x$ | $x$ |


| Ref | Location | A-Node | B-Node |  | Flow (vehs) |  | Obs - Mod | Percent Diff. | GEH Stat. | Criteria Tests |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Observed | Modelled |  |  |  | GEH | Flow |
| 51 | B9152 | 1900 | 3182 | 19003182 | 199 | 306 | 107 | 53.77 | 6.7 | $\checkmark$ | $\times$ |
| 52 | B9152 | 1900 | 2080 | 19002080 | 13 | 2 | -11 | -84.62 | 4.0 | $\checkmark$ | $\checkmark$ |
| 53 | A95 | 1910 | 1850 | 19101850 | 51 | 58 | 7 | 13.92 | 1.0 | $\checkmark$ | $\checkmark$ |
| 54 | A95 | 1910 | 1840 | 19101840 | 51 | 67 | 16 | 30.39 | 2.0 | $\checkmark$ | $\checkmark$ |
| 55 | B9152 | 1910 | 1920 | 19101920 | 26 | 2 | -24 | -92.31 | 6.4 | $\checkmark$ | $\checkmark$ |
| 56 | B9152 | 1920 | 1910 | 19201910 | 13 | 1 | -12 | -92.31 | 4.5 | $\checkmark$ | $\checkmark$ |
| 57 | B9152 | 2080 | 1900 | 20801900 | 26 | 3 | -23 | -88.46 | 6.0 | $\checkmark$ | $\checkmark$ |
| 58 | A889 | 2270 | 2280 | 22702280 | 27 | 34 | 7 | 24.07 | 1.2 | $\checkmark$ | $\checkmark$ |
| 59 | A889 | 2280 | 2270 | 22802270 | 19 | 20 | 1 | 2.63 | 0.1 | $\checkmark$ | $\checkmark$ |
| 60 | A923 | 2810 | 2860 | 28102860 | 457 | 419 | -38 | -8.29 | 1.8 | $\checkmark$ | $\checkmark$ |
| 61 | Dunkeld | 2810 | 2820 | 28102820 | 385 | 363 | -22 | -5.77 | 1.1 | $\checkmark$ | $\checkmark$ |
| 62 | Dunkeld | 2810 | 2800 | 28102800 | 80 | 177 | 97 | 121.25 | 8.6 | $\checkmark$ | $\checkmark$ |
| 63 | A822 | 2820 | 2810 | 28202810 | 440 | 356 | -85 | -19.20 | 4.2 | $\checkmark$ | $\checkmark$ |
| 64 | A822 | 2820 | 2830 | 28202830 | 385 | 363 | -22 | -5.77 | 1.1 | $\checkmark$ | $\checkmark$ |
| 65 | A822 | 2830 | 2820 | 28302820 | 440 | 356 | -85 | -19.20 | 4.2 | $\checkmark$ | $\checkmark$ |
| 66 | A822 | 2830 | 2840 | 28302840 | 385 | 363 | -22 | -5.77 | 1.1 | $\checkmark$ | $\checkmark$ |
| 67 | A822 | 2840 | 2830 | 28402830 | 440 | 356 | -85 | -19.20 | 4.2 | $\checkmark$ | $\checkmark$ |
| 68 | A822 | 2840 | 2850 | 28402850 | 385 | 363 | -22 | -5.77 | 1.1 | $\checkmark$ | $\checkmark$ |
| 69 | A822 | 2850 | 2840 | 28502840 | 440 | 356 | -85 | -19.20 | 4.2 | $\checkmark$ | $\checkmark$ |
| 70 | A923 | 2860 | 2870 | 28602870 | 457 | 419 | -38 | -8.29 | 1.8 | $\checkmark$ | $\checkmark$ |
| 71 | A822 | 2860 | 2810 | 28602810 | 368 | 357 | -11 | -2.91 | 0.6 | $\checkmark$ | $\checkmark$ |
| 72 | A923 | 2870 | 2880 | 28702880 | 457 | 419 | -38 | -8.29 | 1.8 | $\checkmark$ | $\checkmark$ |
| 73 | A923 | 2870 | 2860 | 28702860 | 368 | 357 | -11 | -2.91 | 0.6 | $\checkmark$ | $\checkmark$ |
| 74 | A923 | 2880 | 2870 | 28802870 | 368 | 357 | -11 | -2.91 | 0.6 | $\checkmark$ | $\checkmark$ |
| 75 | B867 | 2940 | 2970 | 29402970 | 57 | 198 | 141 | 247.89 | 12.5 | $\times$ | $x$ |
| 76 | B867 | 2970 | 2940 | 29702940 | 103 | 180 | 77 | 74.66 | 6.5 | $\checkmark$ | $\checkmark$ |
| 77 | A9 Bankfoot | 3020 | 2940 | 30202940 | 1,173 | 1,623 | 450 | 38.35 | 12.0 | $x$ | $x$ |
| 78 | A9 | 3090 | 3100 | 30903100 | 1,293 | 1,746 | 453 | 35.03 | 11.6 | $x$ | $x$ |
| 79 | A85 | 3100 | 3160 | 31003160 | 878 | 884 | 6 | 0.69 | 0.2 | $\checkmark$ | $\checkmark$ |
| 80 | - | 3100 | 3110 | 31003110 | 410 | 408 | -2 | -0.44 | 0.1 | $\checkmark$ | $\checkmark$ |
| 81 | A85 | 3110 | 3120 | 31103120 | 410 | 408 | -2 | -0.44 | 0.1 | $\checkmark$ | $\checkmark$ |
| 82 | A85 | 3110 | 3100 | 31103100 | 399 | 434 | 35 | 8.75 | 1.7 | $\checkmark$ | $\checkmark$ |
| 83 | A85 | 3120 | 3130 | 31203130 | 410 | 408 | -2 | -0.44 | 0.1 | $\checkmark$ | $\checkmark$ |
| 84 | A85 | 3120 | 3110 | 31203110 | 399 | 434 | 35 | 8.75 | 1.7 | $\checkmark$ | $\checkmark$ |
| 85 | A85 | 3130 | 3120 | 31303120 | 399 | 434 | 35 | 8.75 | 1.7 | $\checkmark$ | $\checkmark$ |
| 86 | - | 3140 | 3150 | 31403150 | 798 | 851 | 53 | 6.63 | 1.8 | $\checkmark$ | $\checkmark$ |
| 87 | A85 | 3140 | 3100 | 31403100 | 794 | 818 | 24 | 2.98 | 0.8 | $\checkmark$ | $\checkmark$ |
| 88 | - | 3150 | 3140 | 31503140 | 794 | 818 | 24 | 2.98 | 0.8 | $\checkmark$ | $\checkmark$ |
| 89 | Perth | 3160 | 3100 | 31603100 | 717 | 769 | 52 | 7.18 | 1.9 | $\checkmark$ | $\checkmark$ |
| 90 | A9 North of Kingussie | 3182 | 1900 | 31821900 | 258 | 1,758 | 1500 | 581.24 | 47.2 | $\times$ | x |
|  |  |  | Totals |  | 40,814 | 45,334 | 4520.15 | 11.11 | 4.12 | 89\% | 90\% |


| Ref | Location | A-Node | B-Node |  | Flow (vehs) |  | Obs - Mod | Percent Diff. | GEH Stat. | Criteria Tests |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Observed | Modelled |  |  |  | GEH | Flow |
| Calibration Links - PM Peak Hour |  |  |  |  |  |  |  |  |  |  |  |
| 1 | A9 Inverness | 1000 | 1010 | 10001010 | 2,018 | 1,798 | -220 | -10.89 | 5.0 | $\checkmark$ | $\checkmark$ |
| 2 | A9 Inverness | 1010 | 1000 | 10101000 | 1,402 | 1,209 | -193 | -13.77 | 5.3 | $\checkmark$ | $\checkmark$ |
| 3 | A9 | 1010 | 1020 | 10101020 | 1,314 | 1,563 | 249 | 18.97 | 6.6 | $\checkmark$ | $x$ |
| 4 | A9 | 1040 | 1010 | 10401010 | 793 | 1,026 | 233 | 29.34 | 7.7 | $\checkmark$ | $\times$ |
| 5 | A96 | 1050 | 1060 | 10501060 | 1,346 | 1,225 | -121 | -9.00 | 3.4 | $\checkmark$ | $\checkmark$ |
| 6 | A96 | 1060 | 1070 | 10601070 | 1,346 | 1,225 | -121 | -9.00 | 3.4 | $\checkmark$ | $\checkmark$ |
| 7 | A96 | 1060 | 1050 | 10601050 | 1,423 | 1,335 | -88 | -6.20 | 2.4 | $\checkmark$ | $\checkmark$ |
| 8 | A96 | 1090 | 1060 | 10901060 | 1,423 | 1,335 | -88 | -6.20 | 2.4 | $\checkmark$ | $\checkmark$ |
| 9 | A82 | 1100 | 1110 | 11001110 | 563 | 565 | 2 | 0.27 | 0.1 | $\checkmark$ | $\checkmark$ |
| 10 | A82 | 1110 | 1100 | 11101100 | 804 | 823 | 19 | 2.40 | 0.7 | $\checkmark$ | $\checkmark$ |
| 11 | A82 | 1110 | 1130 | 11101130 | 563 | 565 | 2 | 0.27 | 0.1 | $\checkmark$ | $\checkmark$ |
| 12 | A82 | 1140 | 1110 | 11401110 | 804 | 823 | 19 | 2.40 | 0.7 | $\checkmark$ | $\checkmark$ |
| 13 | B8082 | 1220 | 1240 | 12201240 | 348 | 355 | 7 | 1.90 | 0.4 | $\checkmark$ | $\checkmark$ |
| 14 | B8082 | 1240 | 1220 | 12401220 | 307 | 307 | -0 | -0.10 | 0.0 | $\checkmark$ | $\checkmark$ |
| 15 | A9 South of Inverness | 1260 | 1290 | 12601290 | 1,974 | 2,149 | 175 | 8.88 | 3.9 | $\checkmark$ | $\checkmark$ |
| 16 | A9 South of Inverness | 1280 | 1290 | 12801290 | 1,614 | 1,974 | 360 | 22.32 | 8.5 | $\checkmark$ | $x$ |
| 17 | A9 South of Inverness | 1290 | 1260 | 12901260 | 1,869 | 1,977 | 108 | 5.75 | 2.5 | $\checkmark$ | $\checkmark$ |
| 18 | A9 South of Inverness | 1290 | 1280 | 12901280 | 1,921 | 2,146 | 225 | 11.70 | 5.0 | $\checkmark$ | $\checkmark$ |
| 19 | B9177 | 1290 | 1320 | 12901320 | 66 | 64 | -2 | -3.48 | 0.3 | $\checkmark$ | $\checkmark$ |
| 20 | B9177 | 1290 | 1310 | 12901310 | 50 | 48 | -2 | -4.60 | 0.3 | $\checkmark$ | $\checkmark$ |
| 21 | B9177 | 1310 | 1290 | 13101290 | 77 | 75 | -2 | -2.99 | 0.3 | $\checkmark$ | $\checkmark$ |
| 22 | B9177 | 1320 | 1290 | 13201290 | 41 | 35 | -6 | -13.66 | 0.9 | $\checkmark$ | $\checkmark$ |
| 23 | B9154 | 1370 | 1460 | 13701460 | 31 | 28 | -4 | -11.29 | 0.6 | $\checkmark$ | $\checkmark$ |
| 24 | B9154 | 1410 | 1460 | 14101460 | 21 | 19 | -2 | -9.05 | 0.4 | $\checkmark$ | $\checkmark$ |
| 25 | A9 Craggie | 1430 | 1480 | 14301480 | 34 | 32 | -2 | -6.76 | 0.4 | $\checkmark$ | $\checkmark$ |
| 26 | B9154 | 1460 | 1370 | 14601370 | 21 | 19 | -2 | -9.05 | 0.4 | $\checkmark$ | $\checkmark$ |
| 27 | B9154 | 1460 | 1410 | 14601410 | 31 | 28 | -4 | -11.29 | 0.6 | $\checkmark$ | $\checkmark$ |
| 28 | B851 | 1480 | 1430 | 14801430 | 36 | 32 | -4 | -10.00 | 0.6 | $\checkmark$ | $\checkmark$ |
| 29 | B851 | 1480 | 1490 | 14801490 | 34 | 32 | -2 | -6.76 | 0.4 | $\checkmark$ | $\checkmark$ |
| 30 | B851 | 1490 | 1480 | 14901480 | 36 | 32 | -4 | -10.00 | 0.6 | $\checkmark$ | $\checkmark$ |
| 31 | B851 | 1490 | 1500 | 14901500 | 34 | 32 | -2 | -6.76 | 0.4 | $\checkmark$ | $\checkmark$ |
| 32 | B851 | 1500 | 1490 | 15001490 | 36 | 32 | -4 | -10.00 | 0.6 | $\checkmark$ | $\checkmark$ |
| 33 | B851 | 1500 | 1510 | 15001510 | 34 | 32 | -2 | -6.76 | 0.4 | $\checkmark$ | $\checkmark$ |
| 34 | B851 | 1510 | 1500 | 15101500 | 36 | 32 | -4 | -10.00 | 0.6 | $\checkmark$ | $\checkmark$ |
| 35 | A938 | 1640 | 1780 | 16401780 | 18 | 14 | -4 | -20.00 | 0.9 | $\checkmark$ | $\checkmark$ |
| 36 | A9 | 1700 | 1710 | 17001710 | 135 | 132 | -3 | -2.00 | 0.2 | $\checkmark$ | $\checkmark$ |
| 37 | - | 1710 | 1700 | 17101700 | 83 | 75 | -8 | -9.40 | 0.9 | $\checkmark$ | $\checkmark$ |
| 38 | - | 1710 | 1720 | 17101720 | 69 | 69 | -0 | -0.29 | 0.0 | $\checkmark$ | $\checkmark$ |
| 39 | - | 1710 | 1740 | 17101740 | 65 | 64 | -1 | -2.00 | 0.2 | $\checkmark$ | $\checkmark$ |
| 40 | - | 1720 | 1710 | 17201710 | 40 | 36 | -4 | -11.00 | 0.7 | $\checkmark$ | $\checkmark$ |
| 41 | - | 1740 | 1710 | 17401710 | 41 | 40 | -1 | -2.93 | 0.2 | $\checkmark$ | $\checkmark$ |
| 42 | - | 1780 | 1640 | 17801640 | 10 | 4 | -6 | -56.00 | 2.1 | $\checkmark$ | $\checkmark$ |
| 43 | A938 | 1780 | 1790 | 17801790 | 9 | 7 | -2 | -26.67 | 0.9 | $\checkmark$ | $\checkmark$ |
| 44 | A938 | 1780 | 1800 | 17801800 | 9 | 8 | -1 | -13.33 | 0.4 | $\checkmark$ | $\checkmark$ |
| 45 | A938 | 1790 | 1780 | 17901780 | 4 | 2 | -2 | -60.00 | 1.4 | $\checkmark$ | $\checkmark$ |
| 46 | A938 | 1800 | 1780 | 18001780 | 5 | 3 | -2 | -44.00 | 1.1 | $\checkmark$ | $\checkmark$ |
| 47 | A9 Aviemore | 1840 | 1870 | 18401870 | 1,332 | 2,111 | 779 | 58.51 | 18.8 | $x$ | $x$ |
| 48 | A95 | 1840 | 1910 | 18401910 | 51 | 9 | -42 | -83.14 | 7.8 | $\checkmark$ | $\checkmark$ |
| 49 | A95 | 1850 | 1910 | 18501910 | 37 | 35 | -2 | -6.22 | 0.4 | $\checkmark$ | $\checkmark$ |
| 50 | A9 Aviemore | 1870 | 1840 | 18701840 | 2007 PA4, ¢fase | 1,989 | 428 | 27.40 | 10.2 | $x$ | $x$ |


| Ref | Location | A-Node | B-Node |  | Flow (vehs) |  | Obs - Mod | Percent Diff. | GEH Stat. | Criteria Tests |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Observed | Modelled |  |  |  | GEH | Flow |
| 51 | B9152 | 1900 | 3182 | 19003182 | 333 | 2,111 | 1778 | 534.05 | 50.9 | $\times$ | $\times$ |
| 52 | B9152 | 1900 | 2080 | 19002080 | 12 | - | -12 | -100.00 | 4.9 | $\checkmark$ | $\checkmark$ |
| 53 | A95 | 1910 | 1850 | 19101850 | 11 | 9 | -2 | -21.82 | 0.8 | $\checkmark$ | $\checkmark$ |
| 54 | A95 | 1910 | 1840 | 19101840 | 64 | 35 | -29 | -45.78 | 4.2 | $\checkmark$ | $\checkmark$ |
| 55 | B9152 | 1910 | 1920 | 19101920 | 25 | 3 | -22 | -88.00 | 5.9 | $\checkmark$ | $\checkmark$ |
| 56 | B9152 | 1920 | 1910 | 19201910 | 8 | 1 | -7 | -87.50 | 3.3 | $\checkmark$ | $\checkmark$ |
| 57 | B9152 | 2080 | 1900 | 20801900 | 25 | 2 | -23 | -92.00 | 6.3 | $\checkmark$ | $\checkmark$ |
| 58 | A889 | 2270 | 2280 | 22702280 | 41 | 37 | -5 | -10.98 | 0.7 | $\checkmark$ | $\checkmark$ |
| 59 | A889 | 2280 | 2270 | 22802270 | 27 | 23 | -4 | -16.30 | 0.9 | $\checkmark$ | $\checkmark$ |
| 60 | A923 | 2810 | 2860 | 28102860 | 661 | 678 | 17 | 2.56 | 0.7 | $\checkmark$ | $\checkmark$ |
| 61 | Dunkeld | 2810 | 2820 | 28102820 | 585 | 595 | 10 | 1.68 | 0.4 | $\checkmark$ | $\checkmark$ |
| 62 | Dunkeld | 2810 | 2800 | 28102800 | 136 | 209 | 73 | 53.68 | 5.6 | $\checkmark$ | $\checkmark$ |
| 63 | A822 | 2820 | 2810 | 28202810 | 481 | 482 | 1 | 0.19 | 0.0 | $\checkmark$ | $\checkmark$ |
| 64 | A822 | 2820 | 2830 | 28202830 | 585 | 595 | 10 | 1.68 | 0.4 | $\checkmark$ | $\checkmark$ |
| 65 | A822 | 2830 | 2820 | 28302820 | 481 | 482 | 1 | 0.19 | 0.0 | $\checkmark$ | $\checkmark$ |
| 66 | A822 | 2830 | 2840 | 28302840 | 585 | 595 | 10 | 1.68 | 0.4 | $\checkmark$ | $\checkmark$ |
| 67 | A822 | 2840 | 2830 | 28402830 | 481 | 482 | 1 | 0.19 | 0.0 | $\checkmark$ | $\checkmark$ |
| 68 | A822 | 2840 | 2850 | 28402850 | 585 | 595 | 10 | 1.68 | 0.4 | $\checkmark$ | $\checkmark$ |
| 69 | A822 | 2850 | 2840 | 28502840 | 481 | 482 | 1 | 0.19 | 0.0 | $\checkmark$ | $\checkmark$ |
| 70 | A923 | 2860 | 2870 | 28602870 | 661 | 678 | 17 | 2.56 | 0.7 | $\checkmark$ | $\checkmark$ |
| 71 | A822 | 2860 | 2810 | 28602810 | 396 | 399 | 3 | 0.73 | 0.1 | $\checkmark$ | $\checkmark$ |
| 72 | A923 | 2870 | 2880 | 28702880 | 661 | 678 | 17 | 2.56 | 0.7 | $\checkmark$ | $\checkmark$ |
| 73 | A923 | 2870 | 2860 | 28702860 | 396 | 399 | 3 | 0.73 | 0.1 | $\checkmark$ | $\checkmark$ |
| 74 | A923 | 2880 | 2870 | 28802870 | 396 | 399 | 3 | 0.73 | 0.1 | $\checkmark$ | $\checkmark$ |
| 75 | B867 | 2940 | 2970 | 29402970 | 147 | 148 | 1 | 0.82 | 0.1 | $\checkmark$ | $\checkmark$ |
| 76 | B867 | 2970 | 2940 | 29702940 | 116 | 120 | 4 | 3.53 | 0.4 | $\checkmark$ | $\checkmark$ |
| 77 | A9 Bankfoot | 3020 | 2940 | 30202940 | 1,763 | 2,214 | 451 | 25.60 | 10.1 | $\times$ | $x$ |
| 78 | A9 | 3090 | 3100 | 30903100 | 1,460 | 1,857 | 397 | 27.22 | 9.8 | $\checkmark$ | $x$ |
| 79 | A85 | 3100 | 3160 | 31003160 | 1,250 | 1,239 | -11 | -0.90 | 0.3 | $\checkmark$ | $\checkmark$ |
| 80 | - | 3100 | 3110 | 31003110 | 180 | 183 | 3 | 1.89 | 0.3 | $\checkmark$ | $\checkmark$ |
| 81 | A85 | 3110 | 3120 | 31103120 | 180 | 183 | 3 | 1.89 | 0.3 | $\checkmark$ | $\checkmark$ |
| 82 | A85 | 3110 | 3100 | 31103100 | 564 | 567 | 3 | 0.59 | 0.1 | $\checkmark$ | $\checkmark$ |
| 83 | A85 | 3120 | 3130 | 31203130 | 180 | 183 | 3 | 1.89 | 0.3 | $\checkmark$ | $\checkmark$ |
| 84 | A85 | 3120 | 3110 | 31203110 | 564 | 567 | 3 | 0.59 | 0.1 | $\checkmark$ | $\checkmark$ |
| 85 | A85 | 3130 | 3120 | 31303120 | 564 | 567 | 3 | 0.59 | 0.1 | $\checkmark$ | $\checkmark$ |
| 86 | - | 3140 | 3150 | 31403150 | 929 | 950 | 21 | 2.25 | 0.7 | $\checkmark$ | $\checkmark$ |
| 87 | A85 | 3140 | 3100 | 31403100 | 1,246 | 1,247 | 1 | 0.06 | 0.0 | $\checkmark$ | $\checkmark$ |
| 88 | - | 3150 | 3140 | 31503140 | 1,246 | 1,247 | 1 | 0.06 | 0.0 | $\checkmark$ | $\checkmark$ |
| 89 | Perth | 3160 | 3100 | 31603100 | 953 | 915 | -38 | -4.00 | 1.2 | $\checkmark$ | $\checkmark$ |
| 90 | A9 North of Kingussie | 3182 | 1900 | 31821900 | 256 | 1,989 | 1733 | 676.84 | 51.7 | $\times$ | x |
|  |  |  | Totals |  | 45,634 | 51,709 | 6075.45 | 6.08 | 3.05 | 94\% | 90\% |

## Appendix B

## TUBA Printout for Full Dualling Option

Transport User Benefit Appraisal TUBA v1.7a
Program run on Thursday, 27 March 2008 at 18:05:29

I NPUT SUMMARY
Run nā me
Ag Ful! Dualling
DM scheme
Do Mi ni mum
DS scheme
Full Dualling
Economic parameter file C: \Program Files $\backslash$ TUBA
1.7 economics\std economics 1.7.t xt

Scheme parameterfile Ti\MOU10 RJB\TrP\000-Projects\Ag HITRANS
(S100867) \TEE\TUBA\A9 Full Dualling.txt
First year of scheme costs 2007
First Appraisal Year 2010
Last Appraisal Year 2069
Modelled years 20102025
Time period
AM peak
PM peak
Total hours
PM peak 1518
Inter-peak
7518
759
Total

Note: All monetary values are in 2002 market prices. All monetary values discounted to 2002 unless otherwise stated.

DM_SCHEME COSTS


|  | 0 |  | 0 |  | $\underset{0}{\mathrm{Ful}}$ |  | T |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Road |  | 2025 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2026 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2027 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road | 0 | 2028 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Road |  | 2029 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road | 0 | 2030 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Road |  | 2031 |  | 0 |  | 0 |  | 0 | 0 |
| Road | 0 | 2032 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2033 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road | 0 | 2034 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Road |  | 2035 |  | 0 |  | 0 |  | 0 | 0 |
| Road | 0 | 2036 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2037 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2038 |  | 0 |  | 0 |  | 0 | 0 |
| Road | 0 | 2039 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2040 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road | 0 | 2041 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Road |  | 2042 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2043 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road | 0 | 2044 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Road |  | 2045 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2046 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2047 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2048 |  | 0 |  | 0 |  | 0 | 0 |
| Road | 0 | 2049 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2050 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2051 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2052 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2053 |  | 0 |  | 0 |  | 0 | 0 |
| Road | 0 | 2054 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Road | 0 |  | 0 |  | 0 |  | 0 |  | 0 |
| Road |  | 2055 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2056 |  | 0 |  | 0 |  | 0 | 0 |
|  | 0 |  | 0 |  | 0 |  | 0 |  |  |
| Road |  | 2057 |  | 0 |  | 0 |  | 0 | 0 |
| Road | 0 | 2058 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |





Ag Full Dualling. OUT

| Road | 2052 | 0 | 0 |  |
| :--- | ---: | ---: | :--- | :--- |
| Road | 2053 | 0 | 0 | 0 |
| Road | 2054 | 0 | 0 | 0 |
| Road | 2055 | 0 | 0 | 0 |
| Road | 2056 | 0 | 0 |  |
| Road | 2057 | 0 | 0 | 0 |
| Road | 2058 | 0 | 0 | 0 |
| Road | 2059 | 0 | 0 | 0 |
| Road | 2060 | 0 | 0 | 0 |
| Road | 2061 | 0 | 0 | 0 |
| Road | 2062 | 0 | 0 | 0 |
| Road | 2063 | 0 | 0 | 0 |
| Road | 2064 | 0 | 0 | 0 |
| Road | 2065 | 0 | 0 | 0 |
| Road | 2066 | 0 | 0 | 0 |
| Road | 2067 | 0 | 0 | 0 |
| Road | 2068 | 0 | 0 | 0 |
| Road | 2069 | 0 | 0 | 0 |
| Road | Total | 0 | 0 | 0 |

TRIP MATRIX TOTALS

| Annuālised | r | numbers (thour |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Submode | Year | Time period | DO MIN | DO SOM |
| Car | 2010 | AM peak | 5261 | 5261 |
| Car | 2010 | PM peak | 9441 | 9441 |
| Car | 2010 | Inter-peak | 5574 | 5574 |
| Car | 2010 | All | 20275 | 20275 |
| Car | 2025 | AM peak | 5669 | 5669 |
| Car | 2025 | PM peak | 10174 | 10174 |
| Car | 2025 | Inter-peak | 6007 | 6007 |
| Car | 2025 | All | 21850 | 21850 |
| LGV Personal | 2010 | AM peak | 1170 | 1170 |
| LGV Personal | 2010 | PM peak | 1893 | 1893 |
| LGV Personal | 2010 | Inter-peak | 704 | 704 |
| LGV Personal | 2010 | Al\| | 3768 | 3768 |
| LGV Personal | 2025 | AM peak | 1261 | 1261 |
| LGV Personal | 2025 | PM peak | 2041 | 2041 |
| LGV Personal | 2025 | Inter-peak | 759 | 759 |
| LGV Personal | 2025 | All | 4061 | 4061 |
| LGV Freight | 2010 | AM peak | 648 | 648 |
| LGV Freight | 2010 | PM peak | 995 | 995 |
| LGV Freight | 2010 | Inter-peak | 376 | 376 |
| LGV Freight | 2010 | All | 2018 | 2018 |
| LGV Freight | 2025 | AM peak | 698 | 698 |
| LGV Freight | 2025 | PM peak | 1072 | 1072 |
| LGV Freight | 2025 | Inter-peak | 405 | 405 |
| LGV Freight | 2025 | All | 2174 | 2174 |
| OGV1 | 2010 | AM peak | 54 | 54 |
| OGV1 | 2010 | PM peak | 965 | 965 |
| OGV1 | 2010 | Inter-peak | 376 | 376 |
| OGV1 | 2010 | All | 1395 | 1395 |
| OGV1 | 2025 | AM peak | 54 | 54 |
| OGV1 | 2025 | PM peak | 965 | 965 |
| OGV1 | 2025 | Inter-peak | 376 | 376 |
| OGV1 | 2025 | Al 1 | 1395 | 1395 |
| Al। | 2010 | AM peak | 7133 | 7133 |
| Al I | 2010 | PM peak | 13294 | 13294 |
| Al I | 2010 | Inter-peak | 7030 | 7030 |
| Al I | 2010 | All | 27456 | 27456 |
| Al I | 2025 | AM peak | 7682 | 7682 |
| Al\| | 2025 | PM peak | 14251 | 14251 |
| Al\| | 2025 | Inter-peak | 7546 | 7546 |
| Al I | 2025 | Al\| | 29480 | 29480 |

DM\&DS_USER_COSTS
Tot al value of user costs, DM and DS. $£ 000$ s.
Mode Year DMtot time DMtot charge DMtot_fuel DMtot_nonfuel
DStot_time DStot_charge D̄Stot_fuel DS̄tot_nonfuel
Page 6

| Road | 2010 |  | 422252 Full | ng. OUT | 122390 | 114510 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 368781 |  | 0 | 124421 | 113017 |  |  |
| Road | 2025 |  | 318677 | 0 | 73598 | 72613 |
| 298597 |  | 0 | 74322 | 72128 |  |  |

FUEL CONSUMPTION

| tal fuel | DM and DS. kilolitres. Do minimum |  |  | Do | something |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Submode | Year | petrol | diesel | petrol | diesel |
| Car | 2010 | 93907 | 33347 | 95205 | 33548 |
| Car | 2025 | 73455 | 44266 | 73935 | 44392 |
| LGV Personal | 2010 | 5658 | 27140 | 5662 | 27040 |
| LGV Personal | 2025 | 6100 | 29197 | 6102 | 29140 |
| LGV Freight | 2010 | 3106 | 14898 | 3108 | 14843 |
| LGV Freight | 2025 | 3347 | 16020 | 3348 | 15991 |
| OGV1 | 2010 | 0 | 39378 | 0 | 41589 |
| OGV1 | 2025 | 0 | 40057 | 0 | 41589 |
| Al I | 2010 | 102671 | 114762 | 103975 | 117019 |
| Al I | 2025 | 82903 | 129541 | 83385 | 131111 |
| Car | Total | 4540706 | 2561409 | 4575263 | 2569559 |
| LGV Personal | Total | 362456 | 1735356 | 362572 | 1731586 |
| LGV Freight | Total | 198908 | 952232 | 198971 | 950254 |
| OGV1 | Total | O | 2397990 | 0 | 2495329 |
| Al\| | Total | 5102071 | 7646987 | 5136807 | 7746729 |

CARBON_EMISSION

| $\operatorname{cost}(£ 000 \mathrm{~s}, \quad 10 \mathrm{w})$ |  |  |  |  | cost (f000s, central) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{cost}(£ 00$ | s, high) |  |  |  |  |
| Submode | Year | DM | DS | Increase | DM |
| DS | Increase | DM | DS | Increase | DM |
| DS | Increase |  |  |  |  |
| Car 2878 | 2010 | 80427 | 81358 | 930 | 2845 |
|  | 33110 | 5057 | 5116 | 59 | 9482 |
| 9592 |  |  |  |  |  |
| Car | 2025 | 74892 | 75268 | 37617 | 2108 |
| 2119 | 11 | 3338 | 3355 |  | 5797 |
| 5827 | 29 |  |  |  |  |
| LGV Personal | 2010-2.8 | 22342 | 22274 | -67.4 | 790 |
| 788 |  | 1405 | 1401 |  | 2634 |
| 2626 |  |  |  |  |  |
| LGV Personal6701842 | $\begin{array}{rrrr}2025 & & \\ & -1 & \\ & \end{array}$ | $\begin{array}{r} 23827 \\ 1062 \end{array}$ | $\begin{array}{r} 23789 \\ 1060 \end{array}$ | -38-2 | $\begin{aligned} & 671 \\ & 1844 \end{aligned}$ |
|  |  |  |  |  |  |
|  | $2010-3$ |  |  |  |  |
| LGV Freight4331442 | 2010 | 12264771 | 12227769 | -37 | $\begin{aligned} & 434 \\ & 1446 \end{aligned}$ |
|  |  |  | 769 | - 2 |  |
| LGV Freight | 2025 | $13074583$ | $13054_{582}$ | - 20.1 | $\begin{aligned} & 368 \\ & 1012 \end{aligned}$ |
|  |  |  |  |  |  |
| 1011 | $2010-2$ |  |  |  |  |
| OGV1 | 2010 | 27414 | 28954818 | 1540 | $\begin{aligned} & 970 \\ & 3232 \end{aligned}$ |
| 10244414 | ${ }^{54} 182$ | 1724 | 1821 | 97 |  |
| OGV1 | 202530 | $\begin{array}{r} 27638 \\ 1232 \end{array}$ | $\begin{gathered} 28694 \\ 1279 \end{gathered}$ | 1057 | $\begin{gathered} 778 \\ 2139 \end{gathered}$ |
| 808 |  |  |  | 47 |  |
| 2221 | 82 |  |  |  |  |
| All 5123 | 2010 | $\begin{array}{r} 142447 \\ 8957 \end{array}$ | $\begin{array}{r} 144813 \\ 9106 \end{array}$ | 2365 | $\begin{aligned} & 5039 \\ & 16794 \end{aligned}$ |
| 5123 | 84 |  |  | 149 |  |
| All 3964 | 20279 |  |  |  |  |
|  | 202539106 | $139431$ | $\begin{array}{r} 140806 \\ 6276 \end{array}$ | 137561 | $\begin{aligned} & 3925 \\ & 10793 \end{aligned}$ |
| 3964 10900 |  |  |  |  |  |
| $\begin{aligned} & \text { Car } \\ & \quad 102905 \\ & 268629 \end{aligned}$ | Total $\begin{aligned} 642 \\ \\ 1745\end{aligned}$ | $\begin{aligned} & 4512662 \\ & 157131 \end{aligned}$ | $\begin{aligned} & 4539189 \\ & 158141 \end{aligned}$ | $\begin{array}{r} 26527 \\ 1010 \end{array}$ | $\begin{array}{r} 102262 \\ 266884 \end{array}$ |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $\begin{aligned} & \text { LGV personal } \\ & 31849 \end{aligned}$ | Total$.60$$-160$ | $\begin{array}{r} 1417270 \\ 48907 \end{array}$ | $\begin{array}{r} 1414736 \\ 48814 \end{array}$ | $.2534 .93$ | $\begin{array}{r} 31908 \\ 82909 \end{array}$ |
|  |  |  |  |  |  |


| $\begin{array}{r} \text { LGVFreight } \\ 17478 \\ 45413 \end{array}$ | Total $\text { - } 31$ | $\begin{gathered} \text { A9 Full } \\ 777703 \\ 26838 \end{gathered}$ | $\begin{array}{r} \text { Dualling. OUT } \\ 776375 \\ 26789 \end{array}$ | -1328. 49 | $\begin{array}{r} 17510 \\ 45497 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OGV1 | Total | 1655854 | 1723084 | 67230 | 37408 |
| 38968 | 1560 | 57407 | 59825 | 2418 | 97411 |
| Al\| 101543 | Total 4132 | 8363488 | 8453384 | 89896 | 189088 |
| 191200 | 2111 | 290283 | 293569 | 3285 | 492702 |



| Road | 0 | $2036$ | $\begin{gathered} A 9 \\ 16183 \end{gathered}$ | 0 | -496 | 333 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Road | 0 | 2037 | 15952 | 0 | -481 | 323 |
|  | 0 | 313 |  |  |  |  |
| Road |  | 2038 | 15725 | 0 | -467 | 314 |
| Road | 0 | $2039{ }^{304}$ | 15501 | 0 | -454 | 304 |
|  | 0 | 295 |  |  |  |  |
| Road |  | 2040 | 15281 | 0 | -441 | 296 |
|  | 0 | 287 |  |  |  |  |
| Road |  | 2041 | 15063 | 0 | 428 | 287 |
| Road | 0 | $2042^{278}$ | 14849 | 0 | 415 | 279 |
|  | 0 | 270 |  |  |  |  |
| Road |  | 2043 | 14638 | 0 | - 403 | 271 |
|  | 0 | 262 |  |  |  |  |
| Road |  | 2044 | 14429 | 0 | - 391 | 263 |
| Road | 0 | 2045 | 14224 | 0 | - 380 | 255 |
|  | 0 | 247 |  |  |  |  |
| Road |  | 2046 | 14022 | 0 | - 369 | 248 |
|  | 0 | $2047240$ |  |  |  |  |
| Road | 0 | $2047233$ | 13823 | 0 | - 358 | 240 |
| Road |  | 2048 | 13626 | 0 | - 348 | 233 |
| Road | 0 | $2049^{226}$ | 13433 | 0 | . 338 | 227 |
|  | 0 | 220 |  |  |  |  |
| Road |  | 2050 | 13242 | 0 | - 328 | 220 |
|  | 0 | 21213 |  |  |  |  |
| Road |  | 2051 | 13054 | 0 | - 318 | 214 |
| Road | 0 | $2052^{207}$ | 12851 | 0 | -309 | 207 |
|  | 0 | 201 |  |  |  |  |
| Road |  | 2053 | 12652 | 0 | - 300 | 201 |
| Road | 0 | 2054195 | 12455 | 0 |  |  |
| Road | 0 | 2054190 | 12455 | 0 | -291 | 195 |
| Road |  | 2055 | 12262 | 0 | -283 | 190 |
| Road | 0 | $2056^{184}$ | 12071 | 0 | . 275 | 184 |
|  | 0 | 179 |  |  |  |  |
| Road |  | 2057 | 11884 | 0 | - 267 | 179 |
|  | 0 | 174 |  |  |  |  |
| Road |  | 2058 | 11699 | 0 | - 259 | 174 |
| Road | 0 | $2059{ }^{168}$ | 11518 | 0 | - 251 | 169 |
|  | 0 | 164 |  |  |  |  |
| Road |  | 2060 | 11339 | 0 | - 244 | 164 |
|  | 0 | 159 |  |  |  |  |
| Road |  | 2061 | 11163 | 0 | - 237 | 159 |
|  | 0 | $2062^{154}$ |  |  |  |  |
| Road | 0 | ${ }^{2062_{150}}$ | 11006 | 0 | - 230 | 154 |
| Road |  | 2063 | 10851 | 0 | - 223 | 150 |
| Road | 0 | $2064{ }^{145}$ | 10698 | 0 | - 217 | 145 |
|  | 0 | 141 |  |  |  |  |
| Road |  | 2065 | 10547 | 0 | - 210 | 141 |
|  | 0 | 137 |  |  |  |  |
| Road |  | 2066 | 10399 | 0 | - 204 | 137 |
|  | 0 | 133 |  |  |  |  |
| Road |  | 2067 | 10253 | 0 | -198 | 133 |
|  | 0 | 129 |  |  |  |  |
| Road |  | 2068 | 10108 | 0 | -193 | 129 |
|  | 0 | 125 |  |  |  |  |
| Road |  | 2069 | 9966 | 0 | -187 | 125 |
|  | 0 | 122 |  |  |  |  |
| Page 9 |  |  |  |  |  |  |

SUBMODE
User benefits and changes in revenues by submode/vehicle type, modelled years and total. $£ 000 \mathrm{~s}$.
$\begin{array}{ll}\text { Submode } & \text { Year } \\ \text { Operator_Rev }\end{array}$

| User | User_Charges | Vehicle_Operating_Cost |  |
| ---: | ---: | ---: | ---: |
| Time PT_fares_(pri | Fuel | Non_fuel |  |
| 40354 | 0 | -826 | 694 |
| 14252 | 0 | -205 | 171 |
| 4892 | 0 | 55 | 0 |
| 2025 | 0 | 19 | 0 |
| 5233 | 0 | 31 | 165 |
| 2173 | 0 | 10 | 52 |
| 2992 | 0 | -1291 | 634 |
| 1631 | 0 | -2031 | 1493 |
| 53471 | 0 | -724 | 486 |
| 20080 | 0 | -12093 | 10363 |
| 857196 | 0 | 1011 | 0 |
| 114403 | 0 | 550 | 2834 |
| 127532 | 0 | -26876 | 12932 |
| 88742 | 0 | -37407 | 26129 |

PERSON_TYPES
User bēnefits and changes in revenues by person type, modelled years and total. f000s.


PURPOSE
User benefits and changes in revenues by trip purpose, modelled years and total. f000s.
Purpose Year
Operator_Rev Indirect


| Vehicle_Operating_Cost |  |
| :---: | ---: |
| Fuel | Non_fuel |
| -1397 | 1493 |
| -566 | 486 |
| -277 | 0 |



PERI OD
User benefits and changes in revenues by time period, modelled years and total. fools.
Period Year User User_Charges Vehicle Operating Cost

Operator_Rev Indirect

|  |  | Time PT_fares_(pri |  | Fuel | Non_fuel |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PT_fares_(pri |  |  |  |  |  |
| AM $^{-}$peak | $2010_{154}$ | 12968 | 0 | - 227 | 263 |
| AM peak | 2025 | 0 | 0 | 0 | 0 |
| PM peak ${ }^{0}$ | 20100 |  |  |  |  |
| PM peak | $\begin{array}{r} 2010 \\ 833 \end{array}$ | 24730 | 0 | -1242 | 783 |
| PM peak | $\begin{array}{r} 202541 \end{array}$ | 20080 | 0 | - 724 | 486 |
| Inter-peak 0 | $\begin{array}{r} 2010 \\ 378 \end{array}$ | 15772 | 0 | - 562 | 447 |
| Inter-peak 0 | 20250 | 0 | 0 | 0 | 0 |
| AM peak ${ }_{0}$ | Total $986$ | 95821 | 0 | - 1467 | 1808 |
| PM peak | Total | 975675 | 0 | - 32163 | 21253 |
| Inter-peak 0 | $\begin{aligned} \text { Total } \\ 2510 \end{aligned}$ | 116377 | 0 | - 3777 | 3068 |

SENSITIVITY
Total user benefits as a percentage of total DM user costs Modelled Years
$\begin{array}{lll}\text { Mode } & 2010 & 2025 \\ \text { Road } & 8.03 \% & 4.27 \%\end{array}$
Economy: Economic Efficiency of the Transport System(TEE)

| Consumers | ALL MODES | Road |
| :--- | ---: | ---: |
| User benefits | TOTAL |  |
| Travel Time | 991810 | 591810 |
| Vehicleoperating costs | -9299 | -9299 |
| Usercharges | 0 | 0 |
| DuringConstruction\& Maintenance | 0 | 0 |
| NET CONSUMERBENEFITS | 582512 | 582512 |

NET CONSUMER BENEFITS

|  | Personal | Freight |
| ---: | ---: | ---: |
| 596062 | 379789 | 216274 |
| -1979 | 8580 | -10560 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 594083 | 388369 | 205714 |

Private Sector Provider I mpacts
Revenue
Operating costs
Investment costs
Grant/subsidy

| 0 | 0 |
| :--- | :--- |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |

Subtotal
Other business Impacts
Developer contributions 0
0
NET BUSINESS IMPACT
TOTAL
Present Value of Transport Economic
Efficiency Benefits (PVB)
1176595
Note: Benefits appear as positive numbers, while costs appear as negative numbers.

Note: All entries are present values discounted to 2002, in 2002 prices
Public Accounts

```
Local Government Funding
    Revenue
    Operating costs
    I nvestment costs
    Developer Contributions
    Grant/ Subsidy Payments
    NET I MPACT
        ALL MODES 
Central Government Funding
    Revenue 0
    Operating costs
    Investment costs
    Developer Contributions
    Grant/Subsidy Payments
    I ndirect Tax Revenues
TOTAL
TOTAL Present Value of Costs (PVC) - 24557
```

Note: Costs appear as positive numbers, while revenues and developer contributions appear as negative numbers.

Note: All entries are present values discounted to 2002, in 2002 prices
Analysis of Monetised Costs and Benefits
Non-Exchequer I mpacts
Consumer User Benefits 582512
Business User Benefits 594083
Private Sector Provider Impacts 0
Other Business I mpacts
Not assessed by TUBA
Accident Benefits
Carbon Benefits
1173310
Net present Value of Benefits (PVB)
0
Local Government Funding
.24557
Central Government Funding
Net present Value Costs (PVC)
1197867
Overall Impact
$\begin{array}{ll}\text { Net present Value (NPV) } & 1197867 \\ \text { Benefit to Cost Ratio (BCR) } & -47.779\end{array}$
Appraisal Period
2010 to 2069

[^6]Ag Full Dualling. OUT
good measure of value for money
and should not be used as the sole basis for decisions

## Scott Wilson Scotland Ltd

Citypoint2
25 Tyndrum Street
Glasgow
G4 OJY
Telephone (0141) 3545600
Fax (0141) 3545601

23 Chester Street
Edinburgh


Telephone (0131) 2251230
Fax (0131) 2255582

6 Ardross Street
Inverness
IV3 5NN
UK
Telephone (01463) 716000
Fax (01463) 714639


[^0]:    ${ }^{1}$ A9 Perth to Inverness Economic Appraisal Study, Strategic Impact Assessment and EALI Analysis, Scott Wilson, October 2007

[^1]:    ${ }^{2}$ Complementarity of Proposals to Upgrade Road and Rail Links in the Inverness-Perth Corridor: Reference Economic Consultants, July 2006
    ${ }^{3}$ Milemaster Journey Time System, Automobile Association, 2006

[^2]:    ${ }^{4}$ A9 Perth-Inverness \& A96 Aberdeen-Inverness: Journey Times, Vehicle Speeds and Vehicle Platooning, Reference Economic Consultants, January 2007

[^3]:    ${ }^{5}$ National Road Traffic Forecasts, Department for Transport (DfT)

[^4]:    Note: all figures are at 2002 prices, as per TUBA

[^5]:    ${ }^{6}$ High-Level Estimates of GVA Benefits over 60 Years - Technical Note, Scott Wilson, November 2007

[^6]:    Note: There may also be other significant costs and benefits, some of which cannot be presented in monetised form. Where this is the case, the analysis presented above does NOT provide a Page 12

